Climate Dynamics

, Volume 44, Issue 7–8, pp 2229–2247 | Cite as

Evaluation of CMIP5 simulated clouds and TOA radiation budgets using NASA satellite observations

  • Erica K. Dolinar
  • Xiquan Dong
  • Baike Xi
  • Jonathan H. Jiang
  • Hui Su


A large degree of uncertainty in global climate models (GCMs) can be attributed to the representation of clouds and how they interact with incoming solar and outgoing longwave radiation. In this study, the simulated total cloud fraction (CF), cloud water path (CWP), top of the atmosphere (TOA) radiation budgets and cloud radiative forcings (CRFs) from 28 CMIP5 AMIP models are evaluated and compared with multiple satellite observations from CERES, MODIS, ISCCP, CloudSat, and CALIPSO. The multimodel ensemble mean CF (57.6 %) is, on average, underestimated by nearly 8 % (between 65°N/S) when compared to CERES–MODIS (CM) and ISCCP results while an even larger negative bias (17.1 %) exists compared to the CloudSat/CALIPSO results. CWP bias is similar in comparison to the CF results, with a negative bias of 16.1 gm−2 compared to CM. The model simulated and CERES EBAF observed TOA reflected SW and OLR fluxes on average differ by 1.8 and −0.9 Wm−2, respectively. The averaged SW, LW, and net CRFs from CERES EBAF are −50.1, 27.6, and −22.5 Wm−2, respectively, indicating a net cooling effect of clouds on the TOA radiation budget. The differences in SW and LW CRFs between observations and the multimodel ensemble means are only −1.3 and −1.6 Wm−2, respectively, resulting in a larger net cooling effect of 2.9 Wm−2 in the model simulations. A further investigation of cloud properties and CRFs reveals that the GCM biases in atmospheric upwelling (15°S–15°N) regimes are much less than in their downwelling (15°–45°N/S) counterparts over the oceans. Sensitivity studies have shown that the magnitude of SW cloud radiative cooling increases significantly with increasing CF at similar rates (~−1.25 Wm−2 %−1) in both regimes. The LW cloud radiative warming increases with increasing CF but is regime dependent, suggested by the different slopes over the upwelling and downwelling regimes (0.81 and 0.22 Wm−2 %−1, respectively). Through a comprehensive error analysis, we found that CF is a primary modulator of warming (or cooling) in the atmosphere. The comparisons and statistical results from this study may provide helpful insight for improving GCM simulations of clouds and TOA radiation budgets in future versions of CMIP.


Cloud fraction TOA radiation budget Error analysis CMIP5 Sensitivity CERES–MODIS 



This work was supported by NASA EPSCoR CAN under Grant NNX11AM15A and NASA CERES project under Grant NNX10AI05G at the University of North Dakota. Dr. Xiquan Dong was also partially supported by the National Basic Research Program of China (973 Program, 2013CB955803) at Beijing Normal University. The models results used in this study are available through the CMIP5 ESGF PCMDI database at CERES cloud and radiation products used in this study are produced by the NASA CERES Team, available at Drs. Jonathan H. Jiang (JHJ) and Hui Su’s time for this study, as well as Erica Dolinar’s summer internship at the Jet propulsion Laboratory, California Institute of Technology, are supported by the NASA COUND project.


  1. Bony S, Dufresne J-L, Le Treut H, Morcrette J–J, Senior C (2004) On dynamic and thermodynamic components of cloud changes. Clim Dyn 22:71–86. doi: 10.1007/s00382-003-0369-6 CrossRefGoogle Scholar
  2. Bony et al (2006) How well do we understand and evaluate climate change feedback processes? J Clim 19:3445–3482CrossRefGoogle Scholar
  3. Cess et al (1990) Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J Geophys Res 95:16601–16615. doi: 10.1029/JD095iD10p16601 CrossRefGoogle Scholar
  4. Chen L, Yu Y, Sun D (2013) Cloud and water vapor feedbacks to the El Niño warming: are they still biased in CMIP5 models? J Clim. doi: 10.1175/JCLI-D-12-00575.1 Google Scholar
  5. Chiriaco et al (2007) Comparison of CALIPSO-like, LaRC, and MODIS retrievals of ice- cloud properties over SIRTA in France and Florida during CRYSTAL-FACE. J Appl Meteo Clim 46:249–272. doi: 10.1175/JAM2435.1
  6. Collins et al (2001) Parameterization of generalized cloud overlap for radiative calculations in general circulation models. J Clim 58:3224–3242Google Scholar
  7. Doelling DR, Loeb NG, Keyes DF, Nordeen ML, Morstad D, Nguyen C, Wielicki BA, Young DF, Sun M (2013) Geostationary enhanced temporal interpolation for CERES flux products. J Atmos Ocean Technol 30:1072–1090CrossRefGoogle Scholar
  8. Dong X, Xi B, Minnis P (2006) A climatology of midlatitude continental clouds from ARM SGP site. Part II: Cloud fraction and surface radiative forcing. J Clim 19:1765–1783CrossRefGoogle Scholar
  9. Dong X, Minnis P, Xi B, Sun-Mack S, Chen Y (2008a) Comparison of CERES-MODIS stratus cloud properties with ground-based measurements at the DOE ARM Southern Great Plains site. J Geophys Res 113:D03204. doi: 10.1029/2007JD008438 Google Scholar
  10. Dong X, Wielicki BA, Xi B, Hu Y, Mace GG, Benson S, Rose F, Kato S, Charlock T, Minnis P (2008b) Using observations of deep convective systems to constrain atmospheric column absorption of solar radiation in the optically thick limit. J Geophys Res 113:D10206. doi: 10.1029/2007JD009769 CrossRefGoogle Scholar
  11. Dong X, Xi B, Kennedy A, Minnis P, Wood R (2014) A 19-month record of Marine Aerosol-Cloud-Radiation properties derived from DOE ARM AMF deployment at the Azores: part I: cloud fraction and single-layered MBL cloud properties. J Clim. doi: 10.1175/JCLI-D-13-00553.1
  12. Han Q, Rossow WB, Lacis AA (1994) Near-global survey of effective radii in liquid water clouds using ISCCP data. J Clim 7:465–497CrossRefGoogle Scholar
  13. Hansen J, Nazarenko L, Ruedy R, Sato M, Willis J, Del Genio A, Koch D, Lacis A, Lo K, Menon S, Novakov T, Perlwitz J, Russell G, Schmidt GA, Tausnev N (2005) Earth’s energy imbalance: confirmation and implications. Science 308:1431–1435. doi: 10.1126/science.1110252 CrossRefGoogle Scholar
  14. Hogan RJ, Illingworth AJ (2000) Deriving cloud overlap statistics from radar. Q J R Meteorol Soc 126:2903–2909CrossRefGoogle Scholar
  15. IPCC (2001) Climate change 2001: the scientific basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds). Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 881 Google Scholar
  16. IPCC AR5 (2013) Chapter 9: evaluation of Climate Models.
  17. Jiang et al (2012) Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA ‘A-Train’ satellite observations. J Geophys Res 117:D14105. doi: 10.1029/2011JD017237 CrossRefGoogle Scholar
  18. Kato S, Sun-Mack S, Miller WF, Rose FG, Chen Y, Minnis P, Wielicki BA (2010) Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles. J Geophys Res 115:D00H28. doi: 10.1029/2009JD012277 CrossRefGoogle Scholar
  19. Kennedy A, Dong X, Xi B, Minnus P, Del Genio A, Khaiyer MM, Wolf A (2010) Evaluation of NASA GISS single column model simulated clouds using combines surface and satellite observation. J Clim. doi: 10.1175/2010JCLI3353.1 Google Scholar
  20. Kennedy A, Dong X, Xi B, Xie S, Zhang Y, Chen J (2011) A comparison of MERRA and NARR reanalysis datasets with the DOE ARM SGP continuous forcing data. J Clim 24:4541–4557CrossRefGoogle Scholar
  21. Klein SA, Zhang Y, Zelinka MD, Pincus R, Boyle J, Gleckler PJ (2013) Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator. J Geophys Res Atmos 118:1329–1342. doi: 10.1002/jgrd.50141 CrossRefGoogle Scholar
  22. Lauer A, Hamilton K (2012) Simulating clouds with global climate models: a comparison on CMIP5 results with CMIP3 and satellite data. J Clim. doi: 10.1175/JCLI-D-12-00451.1 Google Scholar
  23. Li J-LF, Waliser DE, Chen W-T, Guan B, Kubar T, Stephens G, Ma H-Y, Deng M, Donner L, Seman C, Horowitz L (2012) An observationally based evaluation of cloud ice water in CMIP3 and CMIP5 GCMs and contemporary reanalyses using contemporary satellite data. J Geophys Res 117:D16105. doi: 10.1029/2012JD017640 CrossRefGoogle Scholar
  24. Li J-LF, Waliser DE, Stephens G, Lee S, L’Ecuyer T, Kato S, Loeb N, Ma H-Y (2013) Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis. J Geophys Res Atmos 118:8166–8184. doi: 10.1002/jgrd.50378 CrossRefGoogle Scholar
  25. Lin B, Minnis P, Fan T-F, Hu Y, Sun W (2010) Radiation characteristics of low and high clouds in different oceanic regions observed by CERES and MODIS. Int J Remote Sens 31:6473–6492CrossRefGoogle Scholar
  26. Loeb et al (2012) Advances in understanding top-of-atmosphere radiation variability from satellite observations. Surv Geophys. doi: 10.1007/s10712-012-9175-1 Google Scholar
  27. Mace et al (2005) Evaluation of cirrus cloud properties derived from MODIS data using cloud properties derived from ground-based observations collected at the ARM SGP site. J Appl Meteorol 44:221–240CrossRefGoogle Scholar
  28. Mace GG, Zhang Q, Vaughan M, Marchand R, Stephens G, Trepte C, Winker D (2009) A description of hydrometeor layer occurrence statistics derived from the first year of merged CloudSat and CALIPSO data. J Geophys Res 114:26. doi: 10.1029/2007JD009755 CrossRefGoogle Scholar
  29. Minnis P, Young DF, Wielicki BA, Heck PW, Dong X, Stowe LL, Welch RM (1999) CERES cloud properties derived from multispectral VIRS data. In: Proceedings of SPIE 3867, satellite remote sensing of clouds and the atmosphere IV, 91, December 8, 1999. doi: 10.1117/12.373047
  30. Minnis P, Young DF, Wielicki BA, Sun-Mack S, Trepte QZ, Chen Y, Heck PW, Dong X (2002) A global cloud database from VIRS and MODIS for CERES. In: Proceedings of SPIE 4891, optical remote sensing of the atmosphere and clouds III 115, April 9, 2003. doi: 10.1117/12.467317
  31. Minnis P, Yost CR, Sun-Mack S, Chen Y (2008) Estimating the top altitude of optically thick ice clouds from thermal infrared satellite observations using CALIPSO data. Geophys Res Lett 35:L12801. doi: 10.1029/2008GL033947 CrossRefGoogle Scholar
  32. Minnis et al (2011) CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data. Part II: examples of average results and comparisons with other data. IEEE Trans Geosci Remote Sens 49:4401–4430CrossRefGoogle Scholar
  33. Morcrette JJ, Jakob C (2000) The response of the ECMWF model to changes in the cloud overlap assumption. Mon Weather Rev 128:1707–1732Google Scholar
  34. Ramanathan V, Cess RD, Harrison EF, Minnis P, Barkstrom BR, Ahmad E, Hartmann D (1989) Cloud-radiative forcing and climate: results from the earth radiation budget experiment. Science 243:57–63CrossRefGoogle Scholar
  35. Rossow WB, Schiffer RA (1999) Advances in understanding clouds in ISCCP. Bull Am Meteorol Soc 80:2261–2287CrossRefGoogle Scholar
  36. Rossow WB, Walker AW, Garder LC (1993) Comparison of ISCCP and other cloud amounts. J Clim 6:2394–2418CrossRefGoogle Scholar
  37. Senior CA, Mitchell JFB (1993) Carbon dioxide and climate: the impact of cloud parameterization. J Clim 6:393–418CrossRefGoogle Scholar
  38. Stanfield R, Dong X, Xi B, Kennedy A, Del Genio AD, Minnis P, Jiang J (2014) Assessment of NASA GISS CMIP5 and post-CMIP5 simulated clouds and TOA radiation budgets using satellite observations: part I: cloud fraction and properties. J Clim. doi: 10.1175/JCLI-D-13-00588.1 Google Scholar
  39. Stephens G, Webster PJ (1984) Cloud decoupling of the surface and planetary radiative budgets. J Atmos 41:681–686Google Scholar
  40. Stephens GL, Vane DG, Boain RJ, Mace GG, Sassen K, Wang Z, Illingworth AJ, O’Connor EJ, Rossow WB, Durden SL, Miller SD, Austin RT, Benedetti A, Mitrescu C (2002) The CloudSat mission and the A-Train: a new dimension of space-based observations of clouds and precipitation. Bull Am Meteorol Soc 83:1771–1790. doi: 10.1175/BAMS-83-12-1771 CrossRefGoogle Scholar
  41. Su H, Jiang JH, Vane DG, Stephens GL (2008) Observed vertical structure of tropical oceanic clouds sorted in large-scale regimes. Geophys Res Lett 35. doi: 10.1029/2008GL035888
  42. Su H, Jiang JH, Gu Y, Neelin JD, Kahn BH, Feldman D, Yung YL, Waters JW, Livesey NJ, Santee ML, Read WG (2008b) Variations of tropical upper tropospheric clouds with sea surface temperature and implications for radiative effects. J Geophys Res 113:D10211. doi: 10.1029/2007JD009624 CrossRefGoogle Scholar
  43. Su et al (2013a) Diagnosis of regime-dependent cloud simulation errors in CMIP5 models using ‘A-Train’ satellite observations and reanalysis data. J Geophys Res 118:2762–2780. doi: 10.1029/2012JD018575 CrossRefGoogle Scholar
  44. Su H, Jiang JH, Zhai C, Shen TJ, Neelin JD, Stephens GL, Yung YL (2013b) Weakening and strengthening structures in the hadley circulation change under global warming and implications for cloud response and climate sensitivity. J Geophys Res (In Review)Google Scholar
  45. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192CrossRefGoogle Scholar
  46. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498CrossRefGoogle Scholar
  47. Wang H, Su W (2013) Evaluating and understanding top of the atmosphere cloud radiative effects in International Panel on Climate Change (IPCC) AR5 CMIP5 models using satellite observations. J Geophys Res 118:683–699. doi: 10.1029/2012JD018619 Google Scholar
  48. Wielicki BA, Barkstrom BR, Harrison EF, Lee RB III, Smith GL, Cooper JE (1996) Clouds and the Earth’s Radiant Energy System (CERES): an earth observing system experiment. Bull Am Meteorol Soc 77:853–868CrossRefGoogle Scholar
  49. Wielicki BA et al (1998) Clouds and the Earth’s Radiant Energy System (CERES): algorithm overview. IEEE Trans Geosci Remote Sens 36:1127–1141CrossRefGoogle Scholar
  50. Xi B, Dong X, Minnis P, Khaiyer M (2010) A 10-yr climatology of cloud cover and vertical distribution from both surface and GOES observations over DOE ARM SGP site. J Geophys Res 115:D12124. doi: 10.1029/2009JD012800 CrossRefGoogle Scholar
  51. Xi B, Dong X, Giannecchini K, Minnis P, Kato S (2014a) An overview of Arctic cloud fraction and height detected by active and passive remote sensing over the ARM NSA site. Geophys Res Lett (Submitted)Google Scholar
  52. Xi B, Dong X, Minnis P, Sun-Mack S (2014b) Comparison of CERES-MODIS stratus cloud properties with ground-based measurements at the DOE ARM AMF at AZORES site. J Geophys Res (Submitted)Google Scholar
  53. Yao M-S, Del Genio AD (2002) Effects of cloud parameterization on the simulation of climate changes in the GISS GCM. Part II: sea surface temperature and cloud feedbacks. J Clim 15:2491–2504. doi: 10.1175/1520-0442 CrossRefGoogle Scholar
  54. Zhang MH et al (2005) Comparing clouds and their seasonal variations in 10 atmospheric general circulation models using satellite measurements. J Geophys Res 110:D15S02. doi: 10.1029/2004JD005021
  55. Zhu P, Hack JJ, Kiehl J (2007) Diagnosing cloud feedbacks in general circulation models. J Clim 20:2602–2622CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Erica K. Dolinar
    • 1
  • Xiquan Dong
    • 1
    • 2
  • Baike Xi
    • 1
  • Jonathan H. Jiang
    • 3
  • Hui Su
    • 3
  1. 1.Department of Atmospheric SciencesUniversity of North DakotaGrand ForksUSA
  2. 2.GCESSBeijing Normal UniversityBeijingChina
  3. 3.NASA Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations