Climate Dynamics

, Volume 44, Issue 5–6, pp 1257–1275 | Cite as

On the stability of the Atlantic meridional overturning circulation during the last deglaciation

  • Wei LiuEmail author
  • Zhengyu Liu
  • Jun Cheng
  • Haibo Hu


Using a generalized stability indicator L, we explore the stability of the Atlantic meridional overturning circulation (AMOC) during the last deglaciation based on a paleoclimate simulation. From the last glacial maximum, as forced by various external climate forcings, notably the meltwater forcing, the AMOC experiences a collapse and a subsequent rapid recovery in the early stage of deglaciation. This change of the AMOC induces an anomalous freshwater divergence and later convergence across the Atlantic and therefore leads to a positive L, suggesting a negative basin-scale salinity advection feedback and, in turn, a mono-stable deglacial AMOC. Further analyses show that most anomalous freshwater is induced by the AMOC via the southern boundary of the Atlantic at 34°S where the freshwater transport (M ovS ) is about equally controlled by the upper branch of the AMOC and the upper ocean salinity along 34°S. From 19 to 17 ka, as a result of multiple climate feedbacks associated with the AMOC change, the upper ocean at 34°S is largely salinified, which helps to induce a switch in M ovS , from import to export. Our study has important implications to the deglacial simulations by climate models. A decomposition of L shows that the AMOC stability is mostly determined by two terms, the salinity stratification at 34°S and the change of stratification with the AMOC. Both terms appear positive in model. However, the former is likely to be distorted towards positive, as associated with a common bias existing over the South Atlantic in climate models. Therefore, the AMOC is potentially biased towards mono-stability in most paleoclimate simulations.


AMOC Stability indicator Freshwater transport Feedback The last deglaciation 



Wei Liu and Zhengyu Liu are supported by NSF, DOE and NSFC 41,130,105. Jun Cheng is supported by NSFC 41206024. Haibo Hu is supported by the National Key Program for Developing Basic Science (Grant Nos. 2010CB428504, 2012CB956002).


  1. Adegbie AT, Schneider RR, Rohl U, Wefer G (2003) Glacial millennial scale fluctuations in central African precipitation recorded in terrigenous sediment supply and freshwater signals offshore Cameroon. Palaeogeogr Palaeoclimatol Palaeoecol 197:323–333CrossRefGoogle Scholar
  2. Adkins JF, McIntyre K, Schrag DP (2002) The salinity, temperature, and δ18O of the glacial deep ocean. Science 298:1769–1773CrossRefGoogle Scholar
  3. Alley RB (2000) The Younger Dryas cold interval as viewed from central Greenland. Quat Sci Rev 19(1–5):213–226. doi: 10.1016/S0277-3791(99)00062-1 CrossRefGoogle Scholar
  4. Barker S, Diz P, Vautravers MJ, Pike J, Knorr G, Hall IR, Broecker WS (2009) Interhemispheric Atlantic seesaw response during the last deglaciation. Nature 457:1097–1102CrossRefGoogle Scholar
  5. Beal LM, De Ruijter WPM, Biastoch A, Zahn R, SCOR/WCRP/IAPSO Working Group 136 (2011) On the role of the Aguhlas system in ocean circulation and Climate. Nature 472:429–436CrossRefGoogle Scholar
  6. Biastoch A, Böning CW, Schwarzkopf FU, Lutjeharms JRE (2009) Increase in Agulhas leakage due to poleward shift of Southern Hemisphere westerlies. Nature 462:495–499CrossRefGoogle Scholar
  7. Bitz CM, Chiang JCH, Cheng W, Barsugli JJ (2007) Rates of thermohaline recovery from freshwater pulses in modern, Last Glacial Maximum, and greenhouse warming climates. Geophys Res Lett 34:L07708. doi: 10.1029/2006GL029237 Google Scholar
  8. Blunier T, Brook EJ (2001) Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291:109–112CrossRefGoogle Scholar
  9. Boyle EA, Keigwin LD (1987) North Atlantic thermohaline circulation during the last 20,000 years: link to high latitude surface temperature. Nature 330:35–40CrossRefGoogle Scholar
  10. Bryan F (1986) High-latitude salinity effects and interhemispheric thermohaline circulations. Nature 323:301–304CrossRefGoogle Scholar
  11. Carlson AE (2009) Geochemical constraints on the Laurentide Ice Sheet contribution to Meltwater Pulse 1A. Quat Sci Rev 28:1625–1630. doi: 10.1016/j.quascirev.2009.02.011 CrossRefGoogle Scholar
  12. Chang P, Ji L, Li H (1997) A decadal climate variation in the tropical Atlantic ocean from thermodynamic air–sea interactions. Nature 385:516–518CrossRefGoogle Scholar
  13. Chiang JCH, Vimont DJ (2004) Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J Clim 17:4143–4158CrossRefGoogle Scholar
  14. Cimatoribus AA, Drijfhout SS, den Toom M, Dijkstra HA (2012) Sensitivity of the Atlantic meridional overturning circulation to south Atlantic freshwater anomalies. Clim Dyn 39:2291–2306CrossRefGoogle Scholar
  15. Clark PU, Mix AC (2002) Ice sheets and sea level of the Last Glacial Maximum. Quat Sci Rev 21(1–3):1–7CrossRefGoogle Scholar
  16. Clark PU, Marshall SJ, Clarke GKC, Hostetler SW, Licciardi JM, Teller JT (2001) Freshwater forcing of abrupt climate change during the last glaciation. Science 293(5528):283–287. doi: 10.1126/science.1062517 CrossRefGoogle Scholar
  17. Clark PU, Mitrovica JX, Milne GA, Tamisiea ME (2002) Sea-level fingerprinting as a direct test for the source of global meltwater pulse IA. Science 295(5564):2438–2441. doi: 10.1126/science.1068797 Google Scholar
  18. Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD (2006) The community climate system model: CCSM3. J Clim 19:2122–2143CrossRefGoogle Scholar
  19. Cuffey KM, Clow GD (1997) Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition. J Geophys Res 102(C12):26383–26396CrossRefGoogle Scholar
  20. Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup NS, Hammer CU, Hvidberg CS, Steffensen JP, Sveinbjörnsdottir AE, Bond G (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364(6434):218–220CrossRefGoogle Scholar
  21. De Deckker P, Moros M, Perner K, Jansen E (2012) Influence of the tropics and southern westerlies on glacial interhemispheric asymmetry. Nat Geosci 5(4):266–269CrossRefGoogle Scholar
  22. De Ruijter WPM, Biastoch A, Drijfhout SS, Lutjeharms JRE, Matano RP, Pichevin T, van Leeuwen PJ, Weijer W (1999) Indian–Atlantic inter-ocean exchange: dynamics, estimation, and impact. J Geophys Res 104:20885–20910CrossRefGoogle Scholar
  23. Dijkstra H (2007) Characterization of the multiple equilibria regime in a global ocean model. Tellus 59A:695–705CrossRefGoogle Scholar
  24. Dong B, Sutton RT (2002) Adjustment of the coupled ocean–atmosphere system to a sudden change in the thermohaline circulation. Geophys Res Lett 29. doi: 10.1029/2002GL015229
  25. Donners J, Drijfhout SS, Hazeleger W (2005) Water mass transformation and subduction in the South Atlantic. J Phys Oceanogr 35:1841–1860CrossRefGoogle Scholar
  26. Drijfhout SS, Weber SL, van der Swaluw E (2011) The stability of the MOC as diagnosed from model projections for pre-industrial, present and future climates. Clim Dyn 37:1575–1586. doi: 10.1007/s00382-010-0930-z CrossRefGoogle Scholar
  27. Gordon AL, Weiss RF, Smethie WM, Warner MJ (1992) Thermocline and intermediate water communication between the South Atlantic and Indian Oceans. J Geophys Res 97:7223–7240CrossRefGoogle Scholar
  28. Heinrich H (1988) Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quat Res 29:142–152CrossRefGoogle Scholar
  29. Hu A, Meehl GA, Han W (2007) Role of the Bering Strait in the thermohaline circulation and abrupt climate change. Geophys Res Lett 34:L05704. doi: 10.1029/2006GL028906 Google Scholar
  30. Hu A, Otto-Bliesner BL, Meehl GA, Han W, Morrill C, Brady EC, Briegleb B (2008) Response of thermohaline circulation to freshwater forcing under present day and LGM conditions. J Clim 21:2239–2258CrossRefGoogle Scholar
  31. Hu A, Meehl GA, Otto-Bliesner BL, Waelbroeck C, Han W, Loutre M, Lambeck K, Mitrovica J, Rosenbloom N (2010) Influence of Bering Strait flow and North Atlantic circulation on glacial sea level changes. Nat Geosci 3:118–121. doi: 10.1038/NGEO729 CrossRefGoogle Scholar
  32. Hu A, Meehl GA, Han W, Timmermann A, Otto-Bliesner BL, Liu Z, Washington W, Large W, Abe-Ouchi A, Kimoto M, Lambeck K, Wu B (2012) Role of the Bering Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability. Proc Natl Acad Sci 109(17):6417–6422. doi: 10.1073/pnas.1116014109 CrossRefGoogle Scholar
  33. Huisman SE, den Toom M, Dijkstra HA, Drijfhout S (2010) An indicator of the multiple equilibria regime of the Atlantic meridional overturning circulation. J Phys Oceanogr 40:551–567. doi: 10.1175/2009JPO4215.1 CrossRefGoogle Scholar
  34. Jackson LC (2013) Shutdown and recovery of the AMOC in a coupled global climate model: the role of the advective feedback. Geophys Res Lett 40:1182–1188. doi: 10.1002/grl.50289 CrossRefGoogle Scholar
  35. Joos F, Spahni R (2008) Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proc Natl Acad Sci 105(5):1425–1430. doi: 10.1073/pnas.0707386105 CrossRefGoogle Scholar
  36. Kageyama M, Merkel U, Otto-Bliesner BL, Prange M, Abe-Ouchi A, Lohmann G, Roche DM, Singarayer J, Swingedouw D, Zhang X (2013) Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: a multi-model study. Clim Past 9(2):935–953CrossRefGoogle Scholar
  37. Krebs U, Timmermann A (2007) Tropical air–sea interactions accelerate the recovery of the Atlantic meridional overturning circulation after a major shutdown. J Clim 20:4940–4956CrossRefGoogle Scholar
  38. Large WG, Danabasoglu G (2006) Attribution and impacts of upper-ocean biases in CCSM3. J Clim 19:2325–2346CrossRefGoogle Scholar
  39. Liu W (2012) Insights from deglacial changes in the Southern Ocean and Atlantic meridional overturning circulation during the last deglaciation. Ph.D thesis 150 pp. Univ of Wisconsin-MadisonGoogle Scholar
  40. Liu W, Liu Z (2013) A diagnostic indicator of the stability of the Atlantic meridional overturning circulation in CCSM3. J Clim 26:1926–1938CrossRefGoogle Scholar
  41. Liu W, Liu Z (2014) A note on the stability indicator of Atlantic meridional overturning circulation. J Clim 27:969–975CrossRefGoogle Scholar
  42. Liu Z, Otto-Bliesner BL, He F, Brady EC, Tomas R, Clark PU, Carlson AE, Lynch-Stieglitz J, Curry W, Brook E, Erickson D, Jacob R, Kutzbach J, Cheng J (2009) Transient simulation of last deglaciation with a new mechanism for Bølling–Allerød warming. Science 325:310–314CrossRefGoogle Scholar
  43. Liu W, Liu Z, Hu A (2013) The stability of an evolving Atlantic meridional overturning circulation. Geophys Res Lett 40:1562–1568. doi: 10.1002/grl.50365 CrossRefGoogle Scholar
  44. Liu W, Liu Z, Brady EC (2014) Why is the AMOC mono-stable in coupled general circulation models? J Clim 27:2427–2443CrossRefGoogle Scholar
  45. Lutjeharms JRE (2006) The agulhas current. Springer, BerlinGoogle Scholar
  46. Lynch-Stieglitz J, Adkins JF, Curry WB, Dokken T, Hall IR, Herguera JC, Hirschi J, Ivanova E, Kissell C, Marchal O, Marchitto TM, McCave IN, McManus JF, Mulitza S, Ninnemann US, Yu E, Zahn R (2007) Atlantic overturning circulation during the Last Glacial Maximum. Science 316:66–69CrossRefGoogle Scholar
  47. Manabe S, Stouffer R (1988) Two stable equilibria of a coupled ocean–atmosphere model. J Clim 1:841–866CrossRefGoogle Scholar
  48. McManus JF, Francois R, Gherardi JM, Keigwin LD, Brown-Leger S (2004) Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428(6985):834–837CrossRefGoogle Scholar
  49. Otto-Bliesner BL, Brady EC, Clauzet G, Tomas R, Levis S, Kothavala Z (2006) Last glacial maximum and Holocene climate in CCSM3. J Clim 19:2526–2544CrossRefGoogle Scholar
  50. Otto-Bliesner BL, Hewitt CD, Marchitto TM Jr, Brady EC, Abe-Ouchi A, Crucific M, Murakami S, Weber SL (2007) Last Glacial Maximum ocean thermohaline circulation: PMIP2 model intercomparisons and data constraints. Geophys Res Lett 34:L12707. doi: 10.1029/2007GL029475 CrossRefGoogle Scholar
  51. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age Earth—the ICE-5G(VM 2) model and GRACE. Annu Rev Earth Planet Sci 32(1):111–149CrossRefGoogle Scholar
  52. Praetorius SK, McManus JF, Oppo DW, Curry WB (2008) Episodic reductions in bottom water currents since the last ice age. Nat Geosci 1:449–452CrossRefGoogle Scholar
  53. Provost C, Escoffier C, Maamaatuaiahutapu K, Kartavtseff A, Garcon V (1999) Subtropical mode waters in the South Atlantic Ocean. J Geophys Res 104:21033–21049CrossRefGoogle Scholar
  54. Rahmstorf S (1996) On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim Dyn 12:799–811CrossRefGoogle Scholar
  55. Rahmstorf S, Crucifix M, Ganopolski A, Goosse H, Kamenkovich IV, Knutti R, Lohmann G, Marsh R, Mysak LA, Wang Z, Weaver AJ (2005) Thermohaline circulation hysteresis: a model intercomparison. Geophys Res Lett 32:L23605. doi: 10.1029/2005GL023655 CrossRefGoogle Scholar
  56. Sachs JP, Anderson RF, Lehman SJ (2001) Glacial surface temperatures of the southeast Atlantic Ocean. Science 293:2077–2079CrossRefGoogle Scholar
  57. Schäfer-Neth C, Paul A (2003) The Atlantic Ocean at the last glacial maximum: 1. objective mapping of the GLAMAP sea-surface conditions. In: Wefer G, Mulitza S, Ratmeyer V (eds) The South Atlantic in the late quaternary: material budget and current systems. Springer, Berlin, pp 531–548CrossRefGoogle Scholar
  58. Shakun JD, Clark PU, He F, Marcott SA, Mix AC, Liu Z, Otto-Bliesner BL, Schmittner A, Bard E (2012) Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484:49–54CrossRefGoogle Scholar
  59. Sijp WP (2012) Characterising meridional overturning bistability using a minimal set of state variables. Clim Dyn 39:2127–2142CrossRefGoogle Scholar
  60. Sijp WP, England MH, Gregory JM (2012) Precise calculations of the existence of multiple AMOC equilibria in coupled climate models. Part I: equilibrium states. J Clim 25:282–298Google Scholar
  61. Stanford JD, Rohling EJ, Hunter SE, Roberts AP, Rasmussen SO, Bard E, McManus J, Fairbanks RG (2006) Timing of meltwater pulse 1a and climate responses to meltwater injections. Paleoceanography 21(4):PA4103CrossRefGoogle Scholar
  62. Stommel H (1961) Thermohaline convection with two stable regimes of flow. Tellus 2:224–230CrossRefGoogle Scholar
  63. Stouffer RJ, Dixon KW, Spelman MJ, Hurlin WJ, Yin J, Gregory JM, Weaver AJ, Eby M, Flato GM, Robitaille DY, Hasumi H, Oka A, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Peltier WR, Vettoretti G, Sokolov AP, Weber SL (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19:1365–1387. doi: 10.1175/JCLI3689.11 CrossRefGoogle Scholar
  64. Talley LD (2008) Freshwater transport estimates and the global overturning circulation: shallow, deep and throughflow components. Prog Oceanogr 78:257–303. doi: 10.1016/j.pocean.2008.05.001 CrossRefGoogle Scholar
  65. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498CrossRefGoogle Scholar
  66. Tsugawa M, Hasumi H (2010) Generation and growth mechanism of a Natal Pulse. J Phys Oceanogr 40:1597–1612CrossRefGoogle Scholar
  67. Weber SL, Drijfhout SS (2007) Stability of the Atlantic meridional overturning circulation in the last glacial maximum climate. Geophys Res Lett 34:L22706. doi: 10.1029/2007GL031437 CrossRefGoogle Scholar
  68. Weber SL, Drijfhout SS, Abe-Ouchi A, Crucifix M, Eby M, Ganopolski A, Murakami S, Otto-Bliesner BL, Peltier WR (2007) The modern and glacial overturning circulation in the Atlantic Ocean in PMIP coupled model simulations. Clim Past 3:51–64CrossRefGoogle Scholar
  69. Weldeab S, Schneider RR, Kölling M, Wefer G (2005) Holocene African droughts relate to eastern equatorial Atlantic cooling. Geology 33:981–984. doi: 10.1130/G21874.1 CrossRefGoogle Scholar
  70. Wu L, Li C, Yang C, Xie S-P (2008) Global teleconnections in response to a shutdown of the Atlantic meridional overturning circulation. J Clim 21:3002–3019CrossRefGoogle Scholar
  71. Xie S-P (1996) Westward propagation of latitudinal asymmetry in a coupled ocean–atmosphere model. J Atmos Sci 53:3236–3250CrossRefGoogle Scholar
  72. Xie S-P, Carton JA (2004) Tropical Atlantic variability: patterns, mechanisms, and impacts, in Earth’s climate: the ocean–atmosphere interaction. Geophys Monogr Ser, vol 147, edited by Wang C, Xie S-P, Carton JA, AGU, Washington, DC, pp 121–142Google Scholar
  73. Xie S-P, Philander SGH (1994) A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus(A) 46:340–350CrossRefGoogle Scholar
  74. Yeager S, Shields C, Large W, Hack J (2006) The low-resolution CCSM3. J Clim 19:2545–2566CrossRefGoogle Scholar
  75. Zhang R, Delworth T (2005) Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J Clim 18:1853–1860CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Cooperative Institute for Climate and SatellitesNorth Carolina State UniversityRaleighUSA
  2. 2.NOAA National Climatic Data CenterAshevilleUSA
  3. 3.CASPO, Scripps Institution of OceanographyUniversity of California, San DiegoLa JollaUSA
  4. 4.Lab. Climate, Ocean and Atmosphere StudiesPeking UniversityBeijingChina
  5. 5.Center for Climatic ResearchUniversity of Wisconsin-MadisonMadisonUSA
  6. 6.Key Laboratory of Meteorological Disaster of Ministry of Education, School of Marine SciencesNanjing University of Information Science and TechnologyNanjingChina
  7. 7.School of Atmospheric SciencesNanjing UniversityNanjingChina

Personalised recommendations