Skip to main content

Advertisement

Log in

Global climate models as forcing for regional ocean modeling: a sensitivity study in the Iberian Basin (Eastern North Atlantic)

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This work evaluates the performance of several global climate models (GCMs) as forcing of a regional ocean model configuration centered in the Iberian Basin. The study is divided in two parts. First, the output of nine GCMs is analyzed based on the fields needed to force the ocean model (Regional Ocean Modelling System—ROMS). GCMs differ greatly between them and their performance depends on the field. In the second part, the two GCMs with the worst performances in both extremes of the ensemble are used as forcing for two ROMS simulations, with the purpose of assessing the range of uncertainty comprised in this set of GCMs. Two other ROMS runs are setup: one climatologically forced control run, and one forced with the average of all the nine GCMs—the ensemble mean. Results show that the tendency of overestimation/underestimation of the forcings is reflected in the modeled hydrography, both at the surface and deeper layers down to 500 m. Nevertheless, in terms of circulation, all four runs reproduce the Azores Current, as well as the coastal transition zone seasonality (winter poleward flow and summer upwelling-associated equatorward flow). The CGCMs output performance as forcing depends on the forcing variable: one performs well for one or more variables, but badly for others, and which field is well or badly reproduced varies for each CGCM. Therefore, there is not a single CGCM having the best forcing for all variables. Hence, our results indicate that the most adequate approach consists of using the ensemble mean as forcing rather than using an individual model. This is supported by the general low overall (i.e. for all forcing variables) errors of the ensemble mean regarding the control climatological dataset, and the good comparison of the ensemble-forced ROMS run with the control run.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorand NESDIS NGDC-24 p 19

  • Ambar I, Howe MR (1979) Observations of the Mediterranean outflow—I mixing in the Mediterranean outflow. Deep Sea Res Part A 26(5):535–554

    Article  Google Scholar 

  • Annan JD, Hargreaves JC (2010) Reliability of the CMIP3 ensemble. Geophys Res Lett 37:L02703. doi:10.1029/2009GL041994

    Article  Google Scholar 

  • Antonov JI, Seidov D, Boyer TP, Locarnini RA, Mishonov AV, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009, vol 2: salinity. In: Levitus S (ed) NOAA Atlas NESDIS 69. U.S. Government Print Office, Washington, DC

  • Barja FJR, Lestegás FR (1992) Os Ríos Galegos—Morfoloxía e Réxime. Consello da Cult Galega, Ponen de Patrim Nat, Santiago de Compostela, Spain

  • Barton ED, Aristegui J, Tett P, Canton M, Garcia-Braun J, Hernandez-Leon S, Nykjaer L, Almeida C, Almunia J, Ballesteros S, Basterretxea G, Escanez J, Garcia-Weill L, Hernandez-Guerra A, Lopez-Laatzen F, Molina R, Montero MF, Navarro-Perez E, Rodriguez JM, van Lenning K, Vélez H, Wild K (1998) The transition zone of the Canary Current upwelling region. Prog Oceanogr 41:455–504

    Article  Google Scholar 

  • Collins WD, Ramaswamy V, Schwarzkopf MD, Sun Y, Portmann RW, Fu Q, Casanova SEB, Dufresne JL, Fillmore DW, Forster PMD, Galin VY, Gohar LK, Ingram WJ, Kratz DP, Lefebvre MP, Li J, Marquet P, Oinas V, Tsushima Y, Uchiyama T, Zhong WY (2006) Radiative forcing by well-mixed greenhouse gases: estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). J Geophys Res 111:D14317. doi:10.1029/2005JD006713

    Article  Google Scholar 

  • da Silva AM, Young CC, Levitus S (1994) Atlas of surface marine data 1994. NOAA Atlas NESDIS 10. U.S. Department of Commerce NOAA NESDIS

  • Delworth TL, Broccoli AJ, Rosati A, Stouffer RJ, Balaji V, Beesley JA, Cooke WF, Dixon KW, Dunne J, Dunne KA, Durachta JW, Findell KL, Ginoux P, Gnanadesikan A, Gordon CT, Griffies SM, Gudgel R, Harrison MJ, Held IM, Hemler RS, Horowitz LW, Klein SA, Knutson TR, Kushner PJ, Langenhorst AR, Lee HC, Lin SJ, Lu J, Malyshev SL, Milly PCD, Ramaswamy V, Russell J, Schwarzkopf MD, Shevliakova E, Sirutis JJ, Spelman MJ, Stern WF, Winton M, Wittenberg AT, Wyman B, Zeng F, Zhang R (2006) GFDL’s CM2 Global Coupled Climate Models. Part I: formulation and simulation characteristics. J Clim 19:643–674. doi:10.1175/JCLI3629.1

    Article  Google Scholar 

  • Fiúza AFG (1983) Upwelling patterns off Portugal. Coastal Upwelling Plenum, New York

    Google Scholar 

  • Flato GM, Boer GJ, Lee WG, McFarlane NA, Ramsden D, Reader MC, Weaver AJ (2000) The Canadian Centre for Climate Modelling and Analysis global coupled model and its climate. Clim Dyn 16(6):451–467. doi:10.1007/s003820050339

    Article  Google Scholar 

  • Fyfe JC, Gillett NP, Thompson DWJ (2010) Comparing variability and trends in observed and modelled global mean surface temperature. Geophys Res Lett 37:L16802. doi:10.1029/2010GL044255

    Article  Google Scholar 

  • Gordon HB, Rotstayn LD, McGregor JL, Dix MR, Kowalczyk EA, O’Farrell SP, Waterman LJ, Hirst AC, Wilson SG, Collier MA, Watterson IG, Elliott TI (2002) The CSIRO Mk3 climate system model. CSIRO atmospheric research, technical report 60

  • Haidvogel DB, Beckmann A (1999) Numerical ocean circulation modeling. Series on environmental science and management, vol 2, Imperial College Press, London, p 318

  • Hasumi H, Emori S (2004) K-1 coupled GCM (MIROC) description. Center for Climate System Research University of Tokyo. National Institute for Environmental Studies, and Frontier Research Center for Global Change 38

  • Holt J, Wakelin S, Lowe J, Tinker J (2010) The potential impacts of climate change on the hydrography of the northwest European continental shelf. Prog Oceanogr 86(3–4):361–379. doi:10.1016/j.pocean.2010.05.003

    Article  Google Scholar 

  • Karnauskas KB, Seager R, Kaplan A, Kushnir Y, Cane MA (2009) Observed strengthening of the zonal sea surface temperature gradient across the equatorial Pacific Ocean. J Clim 22:4316–4321. doi:10.1175/2009JCLI2936.1

    Article  Google Scholar 

  • Lambert SJ, Boer GJ (2001) CMIP1 evaluation and intercomparison of coupled climate models. Clim Dyn 17:83–106

    Article  Google Scholar 

  • Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary-layer parameterization. Rev Geophys 32(4):363–403. doi:10.1029/94RG01872

    Article  Google Scholar 

  • Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia H., Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009, vol 1: temperature. In: Levitus S (ed) NOAA Atlas NESDIS 68, U.S. Government Print Office Washington, DC

  • Lorenzo MN, Ramos AM, Taboada JJ, Gimeno L (2011) Changes in present and future circulation types frequency in northwest Iberian Peninsula. PLoS One 6(1):e16201. doi:10.1371/journal.pone.0016201

    Article  Google Scholar 

  • Marchesiello P, McWilliams JC, Shchepetkin A (2001) Open boundary conditions for long-term integration of regional oceanic models. Ocean Model 3:1–20

    Article  Google Scholar 

  • Marchesiello P, Debreu L, Couvelard X (2009) Spurious diapycnal mixing in terrain-following coordinate models: the problem and a solution. Ocean Model 26(3–4):156–169. doi:10.1016/j.ocemod.2008.09.004

    Article  Google Scholar 

  • Mason E, Colas F, Molemaker J, Shchepetkin AF, Troupin C, McWilliams JC, Sangrà P (2011) Seasonal variability of the Canary Current: a numerical study. J Geophys Res 116:C06001. doi:10.1029/2010JC006665

    Google Scholar 

  • Mazé JP, Arhan M, Mercier H (1997) Volume budget of the eastern boundary layer off the Iberian Peninsula. Deep Sea Res I 44(9–10):1543–1574. doi:10.1016/S0967-0637(97)00038-1

    Article  Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset—a new era in climate change research. Bull Am Meteorol Soc 88(9):1383–1394. doi:10.1175/BAMS-88-9-1383

    Article  Google Scholar 

  • Miranda PMA, Alves JMR, Serra N (2012) Climate change and upwelling: response of Iberian upwelling to atmospheric forcing in a regional climate scenario. Clim Dyn. doi:10.1007/s00382-012-1442-9

    Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grubler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher HM, Price L, Riahi K, Roehrl A, Rogner HH, Sankovski A, Schlesinger M, Shukla P, Smith SJ, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Special report on emissions scenarios: a special report of working group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Nolasco R, Cordeiro Pires A, Cordeiro N, Le Cann B, Dubert J (2013) A high-resolution modeling study of the Western Iberian Margin mean and seasonal upper ocean circulation. Ocean Dyn. doi:10.1007/s10236-013-0647-8

    Google Scholar 

  • Pauly D, Christensen V (1995) Primary production required to sustain global fisheries. Nature 374:255–257

    Article  Google Scholar 

  • Peliz A, Dubert J, Haidvogel DB, Le Cann B (2003) Generation and unstable evolution of a density-driven Eastern Poleward Current: the Iberian Poleward Current. J Geophys Res 108(C8):3268. doi:10.1029/2002JC001443

    Article  Google Scholar 

  • Peliz A, Dubert J, Santos AMP, Oliveira PB, Le Cann B (2005) Winter upper ocean circulation in the Western Iberian Basin—fronts, eddies and poleward flows: an overview. Deep Sea Res I 52:621–646

    Article  Google Scholar 

  • Peliz A, Dubert J, Marchesiello P, Teles-Machado A (2007) Surface circulation in the Gulf of Cadiz: model and mean flow structure. J Geophys Res 112:C11015. doi:10.1029/2007JC004159

    Article  Google Scholar 

  • Pierce DW, Barnett TP, Santer BD, Gleckler PJ (2009) Selecting global climate models for regional climate change studies. Proc Natl Acad Sci 106(21):8441–8446

    Article  Google Scholar 

  • Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parameterizations in the Hadley Centre climate model: HadAM3. Clim Dyn 16(2–3):123–146. doi:10.1007/s003820050009

    Article  Google Scholar 

  • Räisänen J, Palmer TN (2001) A probability and decision-model analysis of a multimodel ensemble of climate change simulations. J Clim 14:3212–3226

    Article  Google Scholar 

  • Ramos AM, Cordeiro Pires A, Sousa PM, Trigo RM (2013) The use of circulation weather types to predict upwelling activity along the Western Iberian Peninsula coast. Cont Shelf Res 69:38–51. http://dx.doi.org/10.1016/j.csr.2013.08.019

  • Ríos AF, Pérez FF, Fraga F (1992) Water masses in the upper and middle North Atlantic Ocean east of the Azores. Deep Sea Res I 39(3–4):645–658. doi:10.1016/0198-0149(92)90093-9

    Article  Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM 5. Part I: model description. Max Planck Institute for Meteorology Report

  • Russell GL, Miller JR, Rind D (1995) A coupled atmosphere–ocean model for transient climate change studies. Atmos Ocean 33(4):683–730. doi:10.1080/07055900.1995.9649550

    Article  Google Scholar 

  • Russell JL, Stouffer RJ, Dixon KW (2005) Intercomparison of the Southern Ocean circulations in IPCC coupled model control simulations. J Clim 19:4560–4575

    Article  Google Scholar 

  • Salas-Mélia D, Chauvin F, Déqué M, Douville H, Guérémy JF, Marquet P, Planton S, Royer JF, Tyteca S (2005) Description and validation of the CNRM-CM3 global coupled model. CNRM working note 103

  • Saunders PM (1982) Circulation in the eastern North Atlantic. J Mar Res 40:641–657

    Google Scholar 

  • Shchepetkin AF, McWilliams JC (2003) A method for computing horizontal pressure-gradient force in an oceanic model with a non-aligned vertical coordinate. J Geophys Res 108(C3):3090. doi:10.1029/2001JC001047

    Article  Google Scholar 

  • Shchepetkin AF, McWilliams JC (2005) The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9(4):347–404. doi:10.1016/j.ocemod.2004.08.002

    Article  Google Scholar 

  • Stouffer RJ, Yin J, Gregory JM, Dixon KW, Spelman MJ, Hurlin W, Weaver AJ, Eby M, Flato GM, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Peltier WR, Robitaille DY, Sokolov A, Vettoretti G, Weber SL (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19:1365–1387

    Article  Google Scholar 

  • Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Trans R Soc A 365(1857):2053–2075. doi:10.1098/rsta.2007.2076

    Article  Google Scholar 

  • Veitch J, Penven P, Shillington F (2010) Modeling equilibrium dynamics of the Benguela Current System. J Phys Oceanogr 40(9):1942–1964

    Article  Google Scholar 

  • Wilks D (2006) Statistical methods in the atmospheric sciences. International Geophysics Series, vol 91, 2nd ed. Academic Press, New York

  • Wooster WS, Bakun A, McLain DR (1976) The seasonal upwelling cycle along the eastern boundary of the North Atlantic. J Mar Res 34:131–141

    Google Scholar 

  • Yukimoto S, Noda A, Kitoh A, Sugi M, Kitamura Y, Hosaka M, Shibata K, Maeda S, Uchiyama T (2001) The new Meteorological Research Institute Coupled GCM (MRI-CGCM2)—model climate and variability. Paper Meteorol Geophys 51(2):47–88

Download references

Acknowledgments

A. Cordeiro Pires was supported by the Portuguese Science and Technology Foundation (FCT—Fundação para a Ciência e Tecnologia) through PhD fellowship SFRH/BD/47500/2008. R. Nolasco was supported by the FCT program “Ciência 2007”. A.M. Ramos was supported by FCT through post-doctoral fellowship SFRH/BPD/84328/2012. We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset. Support of this dataset is provided by the Office of Science, U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Cordeiro Pires.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pires, A.C., Nolasco, R., Rocha, A. et al. Global climate models as forcing for regional ocean modeling: a sensitivity study in the Iberian Basin (Eastern North Atlantic). Clim Dyn 43, 1083–1102 (2014). https://doi.org/10.1007/s00382-014-2151-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2151-3

Keywords