Skip to main content

Advertisement

Log in

Climate controls on rainfall isotopes and their effects on cave drip water and speleothem growth: the case of Molinos cave (Teruel, NE Spain)

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The interpretation of stable isotopes in speleothems in terms of past temperature variability or precipitation rates requires a comprehensive understanding of the climatic factors and processes that influence the δ18O signal in the way through the atmosphere to the cave, where carbonate precipitates acquiring its final isotopic composition. This study presents for the first time in the Iberia Peninsula an integrated analysis of the isotopic composition of rainfall (δ18Op) during 2010–2012 years and, through a detailed monitoring survey, the transference of the primary isotopic signal throughout the soil and epikarst into the Molinos cave (Teruel, NE Spain). Both air temperature and amount of precipitation have an important effect on δ18Op values, clearly imprinting a seasonal variability modulated by an amount effect when rainfall events are more frequent or intense. Air mass history and atmospheric circulation influences are considered through the study of weather types, synoptic-scale climate patterns and large-scale atmospheric circulation indexes (North Atlantic Oscillation and Western Mediterranean Oscillation) revealing a dominant source effect on δ18Op values in this region where tropical North Atlantic and Western Mediterranean are the two moisture source regions. A delay of 2–3 months occurs between the dripwater oxygen isotopic composition (δ18Od) respect to δ18Op values as a consequence of large residence time in the epikarst. Limited calcite precipitates are found from winter to spring when δ18Od values are less negative and dripwater rates are constant. This study suggests that NE Iberian δ18Ocalcite proxy records are best interpreted as reflecting a combination of parameters, not just paleotemperature or paleorainfall and, if extending present-day situation towards the recent past, a biased signal towards winter values should be expected in Molinos speleothem records.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Araguás-Araguás LJ, Diaz Teijeiro MF (2005) Isotope composition of precipitation and water vapour in the Iberian Peninsula. Isotopic composition of precipitation in the Mediterranean Basin in relation to air circulation patterns and climate, IAEA, Isotope Hydrology Section. Vienna, Austria, pp 173–191

  • Araguás-Araguás L, Froehlich K, Rozanski K (2000) Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol Process 14:1341–1355

    Article  Google Scholar 

  • Baldini LM, McDermott F, Foley AM, Baldini JUL (2008) Spatial variability in the European winter precipitation d18O-NAO relationship: Implications for reconstructing NAO-mode climate variability in the Holocene. Geophys Res Lett 35. doi:10.1029/2007GL032027

  • Baldini LM, McDermott F, Baldini JUL et al (2010) An investigation of the controls on Irish precipitation δ18O values on monthly and event timescales. Clim Dyn 35:977–993. doi:10.1007/s00382-010-0774-6

    Article  Google Scholar 

  • Boch R, Spötl C, Kramers J (2009) High-resolution isotope records of early Holocene rapid climate change from two coeval stalagmites of Katerloch Cave, Austria. Quat Sci Rev 28:2527–2538

    Article  Google Scholar 

  • Breitenbach SFM, Adkins JF, Meyer H et al (2010) Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India. Earth Planet Sci Lett 292:212–220

    Article  Google Scholar 

  • Caballero E, Jiménez De Cisneros C, Reyes E (1996) A stable isotope study of cave seepage waters. Appl Geochem 11:583–587. doi:10.1016/0883-2927(96)00026-1

    Article  Google Scholar 

  • Canerot J, Pignatelli R (1979) Hoja Geológica Magna 1:50.000, 519 Aguaviva. Geological map, IGME

  • Celle-Jeanton H, Travi Y, Blavoux B (2001) Isotopic typology of the precipitation in the Western Mediterranean Region at three different time scales. Geophys Res Lett 28:1215–1218. doi:10.1029/2000GL012407

    Article  Google Scholar 

  • Coleman ML, Shepard, TJ, Durham JJ, Rouse JE, Moore GR (1982) Reduction of water with zinc for hydrogen isotope analysis. Anal Chem 54:993–995

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703. doi:10.1126/science.133.3465.1702

    Article  Google Scholar 

  • Cruz FW, Burns S, Karmann I et al (2006) A stalagmite record of changes in atmospheric circulation and soil processes in the Brazilian subtropics during the Late Pleistocene. Quat Sci Rev 25:2749–2761

    Article  Google Scholar 

  • Dansgaard W (1953) The abundance of O18 in atmospheric water and water vapour. Tellus 5:461–469

    Article  Google Scholar 

  • Dansgaard W (1961) The isotopic composition of natural waters. Reitzel, pp 120

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468. doi:10.1111/j.2153-3490.1964.tb00181.x

    Article  Google Scholar 

  • Darling WG, Bath AH, Gibson J, Rozanski K (2006) Isotopes in water. In: Leng M (ed) Isotopes in Paleaeoenvironmental Research, Developments in Paleoenvironmental Research, Springer, pp 1–66

  • Delgado-Huertas A, Núñez-Gómez R, Caballero-Mesa E, Jiménez-Cisneros C, Reyes-Camacho E (1991) Composición isotópica del agua de lluvia en Granada. In: Presented at the IV Congreso de Geoquímica de España, Soria, pp 350–358

  • Denton GH, Alley RB, Comer GC, Broecker WS (2005) The role of seasonality in abrupt climate change. Quat Sci Rev 24:1159–1182

    Article  Google Scholar 

  • Epstein S, Mayeda T (1953) Variation of O18 content of waters from natural sources. Geochimica et Cosmochimica Acta 4:213–224

  • Fleitmann D, Burns S, Mudelsee M et al (2003) Holocene forcing of the Indian Monsoon recorded in a stalagmite from Southern Oman. Science 300:1737–1739

    Article  Google Scholar 

  • García-Ruiz JM, López-Moreno JI, Vicente-Serrano SM et al (2011) Mediterranean water resources in a global change scenario. Earth Sci Rev 105:121–139. doi:10.1016/j.earscirev.2011.01.006

    Article  Google Scholar 

  • Gimeno L, Nieto R, Trigo RM, Vicente-Serrano SM, Lopez-Moreno JI (2010) Where does the Iberian Peninsula moisture come from? An answer based on a Lagrangian approach. J Hydrometeorol 11:421–436

  • Goodess CM, Palutikof JP (1998) Development of daily rainfall scenarios for southeast Spain using a circulation-type approach to downscaling. Int J Climatol 18:1051–1083. doi:10.1002/(SICI)1097-0088(199808)18:10<1051:AID-JOC304>3.0.CO;2-1

    Article  Google Scholar 

  • International Atomic Energy Agency (2005) Isotopic composition of precipitation in the Mediterranean Basin in relation to air circulation patterns and climate: final report of a coordinated research project, 2000–2004. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Jenkinson AF, Collison P (1977) An initial climatology of Wales over the North Sea. Synoptic climatology branch memorandum, Meteorological Office, London. Bracknell, p 18

  • Kim S-T, O’Neil JR (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta 61:3461–3475

    Article  Google Scholar 

  • Lachniet MS (2009) Climatic and environmental controls on speleothem oxygen-isotope values. Quat Sci Rev 28:412–432

    Article  Google Scholar 

  • Longinelli A, Selmo E (2003) Isotopic composition of precipitation in Italy: a first overall map. J Hydrol 270:75–88. doi:10.1016/S0022-1694(02)00281-0

    Article  Google Scholar 

  • López-Bustins JA (2007) The Western Mediterranean oscillation and rainfall in the Catalan countries. PhD Thesis, University of Barcelona (unpublished)

  • Lopez-Bustins J-A, Martin-Vide J, Sanchez-Lorenzo A (2008) Iberia winter rainfall trends based upon changes in teleconnection and circulation patterns. Glob Planet Change 63:171–176. doi:10.1016/j.gloplacha.2007.09.002

    Article  Google Scholar 

  • Mangini A, Spötl C, Verdes P (2005) Reconstruction of temperature in the Central Alps during the past 2000 yr from a [delta]18O stalagmite record. Earth Planet Sci Lett 235:741–751

    Article  Google Scholar 

  • Mariotti A, Zeng N, Lau K-M (2002) Euro-Mediterranean rainfall and ENSO—a seasonally varying relationship. Geophys Res Lett 29:59–1–59–4. doi:10.1029/2001GL014248

    Article  Google Scholar 

  • Martin-Vide J, Lopez-Bustins J-A (2006) The Western Mediterranean oscillation and rainfall in the Iberian Peninsula. Int J Climatol 26:1455–1475. doi:10.1002/joc.1388

    Article  Google Scholar 

  • Mattey D, Lowry D, Duffet J et al (2008) A 53 year seasonally resolved oxygen and carbon isotope record from a modern Gibraltar speleothem: reconstructed drip water and relationship to local precipitation. Earth Planet Sci Lett 269:80–95. doi:10.1016/j.epsl.2008.01.051

    Article  Google Scholar 

  • Millán M, Estrela MJ, Caselles V (1995) Torrential precipitations on the Spanish east coast: the role of the Mediterranean sea surface temperature. Atmos Res 36:1–16

    Article  Google Scholar 

  • Millán MM, Salvador R, Mantilla E, Kallos G (1997) Photooxidant dynamics in the Mediterranean basin in summer: results from European research projects. J Geophys Res 102:8811–8823

    Article  Google Scholar 

  • Millán MM, Estrela MJ, Miró J (2005) Rainfall components: variability and spatial distribution in a Mediterranean Area (Valencia Region). J Clim 18:2682–2705. doi:10.1175/JCLI3426.1

    Article  Google Scholar 

  • Piccini L, Zanchetta G, Drysdale RN et al (2008) The environmental features of the Monte Corchia cave system (Apuan Alps, central Italy) and their effects on speleothem growth. Int J Speleol 37:153–172

    Article  Google Scholar 

  • Plata Bedmar A (1994) Composición isotópica de las precipitaciones y aguas subterráneas de la península Ibérica. Ministerio de Fomento, pp 139

  • Rodó X, Baert E, Comin FA (1997) Variations in seasonal rainfall in Southern Europe during the present century: relationships with the North Atlantic Oscillation and the El Niño-Southern Oscillation. Clim Dyn 13:275–284

  • Rozanski K, Araguás-Araguás L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. Geophys Monogr Ser 78:1–36

    Google Scholar 

  • Saighi O (2005) Isotopic composition of precipitation from Algiers and Assekrem. Isotopic composition of precipitation in the Mediterranean Basin in relation to air circulation patterns and climate, IAEA, Isotope Hydrology Section. Vienna, Austria, pp 5–17

  • Spellman G (2000) The application of an objective weather-typing system to the Iberian peninsula. Weather 55:375–385. doi:10.1002/j.1477-8696.2000.tb04023.x

    Article  Google Scholar 

  • Treble PC, Budd WF, Hope PK, Rustomji PK (2005) Synoptic-scale climate patterns associated with rainfall δ18O in southern Australia. J Hydrol 302:270–282. doi:10.1016/j.jhydrol.2004.07.003

    Article  Google Scholar 

  • Tremaine DM, Froelich PN, Wang Y (2011) Speleothem calcite farmed in situ: modern calibration of δ18O and δ13C paleoclimate proxies in a continuously-monitored natural cave system. Geochim Cosmochim Acta 75:4929–4950. doi:10.1016/j.gca.2011.06.005

    Article  Google Scholar 

  • Trigo RM, DaCamara CC (2000) Circulation weather types and their influence on the precipitation regime in Portugal. Int J Climatol 20:1559–1581

    Article  Google Scholar 

  • Trigo RM, Osborn TJ, Corte-Real JM (2002) The North Atlantic Oscillation influence on Europe: climate impacts and associated physical mechanisms. Clim Res 20:9–17

    Article  Google Scholar 

  • Trigo RM, Pozo-Vázquez D, Osborne T et al (2004) North Atlantic Oscillation influence on precipitation, river flow and water resources in the Iberian peninsula. Int J Climatol 24:925–944

    Article  Google Scholar 

  • Vandenschrick G, van Wesemael B, Frot E et al (2002) Using stable isotope analysis (δD–δ18O) to characterise the regional hydrology of the Sierra de Gador, south east Spain. J Hydrol 265:43–55

    Article  Google Scholar 

  • Wackerbarth A, Scholz D, Fohlmeister J, Mangini A (2010) Modelling the δ18O value of cave drip water and speleothem calcite. Earth Planet Sci Lett 299:387–397

    Article  Google Scholar 

  • Wackerbarth A, Langebroek PM, Werner M et al (2012) Simulated oxygen isotopes in cave drip water and speleothem calcite in European caves. Clim Past 8:1781–1799. doi:10.5194/cp-8-1781-2012

    Article  Google Scholar 

  • Wang X, Auler AS, Edwards RL et al. (2007) Millennial-scale precipitation changes in southern Brazil over the past 90,000 years. Geophys Res Lett 34:L23701. doi:10.1029/2007GL031149

Download references

Acknowledgments

The funding for this study mainly derives from GA-LC-030/2011, GA-LC-021/2008, CGL2010-16376 and CGL2009-10455/BTE projects. The work was conducted in collaboration with the GRACCIE-Consolider CSD2007-00067 network. A. Moreno acknowledges the funding from the “Ramón y Cajal” postdoctoral program. We are indebt to Emilio and Javier from the Molinos council, Beatriz Bueno (IPE) and Aida Adsuar (IPE) for their help with dripwater sampling, Alberto Barcos (IPE) and Joaquín Perona (UB) for the analyses on waters and calcite samples, María Pazos (IPE) for her help with statistical analyses, César Azorín (IPE) for the WeMOi data, Miguel Sevilla (IPE) for Fig. 1 design and Jesús Carrera (IDAEA) for his invaluable help on hydrological modelling. The Ebro Hydrographic Confederation network is acknowledged by the meteorological data from Gallipuén station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Moreno.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno, A., Sancho, C., Bartolomé, M. et al. Climate controls on rainfall isotopes and their effects on cave drip water and speleothem growth: the case of Molinos cave (Teruel, NE Spain). Clim Dyn 43, 221–241 (2014). https://doi.org/10.1007/s00382-014-2140-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2140-6

Keywords

Navigation