Climate Dynamics

, Volume 42, Issue 9–10, pp 2339–2351 | Cite as

Scaling fluctuation analysis and statistical hypothesis testing of anthropogenic warming

Article

Abstract

Although current global warming may have a large anthropogenic component, its quantification relies primarily on complex General Circulation Models (GCM’s) assumptions and codes; it is desirable to complement this with empirically based methodologies. Previous attempts to use the recent climate record have concentrated on “fingerprinting” or otherwise comparing the record with GCM outputs. By using CO2 radiative forcings as a linear surrogate for all anthropogenic effects we estimate the total anthropogenic warming and (effective) climate sensitivity finding: ΔTanth = 0.87 ± 0.11 K, \(\uplambda_{{2{\text{x}}{\text{CO}}_{2} ,{\text{eff}}}} = 3.08 \pm 0.58\,{\text{K}}\). These are close the IPPC AR5 values ΔTanth = 0.85 ± 0.20 K and \(\uplambda_{{2{\text{x}}{\text{CO}}_{2} }} = 1.5\!-\!4.5\,{\text{K}}\) (equilibrium) climate sensitivity and are independent of GCM models, radiative transfer calculations and emission histories. We statistically formulate the hypothesis of warming through natural variability by using centennial scale probabilities of natural fluctuations estimated using scaling, fluctuation analysis on multiproxy data. We take into account two nonclassical statistical features—long range statistical dependencies and “fat tailed” probability distributions (both of which greatly amplify the probability of extremes). Even in the most unfavourable cases, we may reject the natural variability hypothesis at confidence levels >99 %.

Keywords

Anthropogenic warming Scaling Natural climate variability Statistical testing 

Notes

Acknowledgments

P. Dubé, the president of the Quebec Skeptical Society, is thanked for helping to motivate this work. An anonymous reviewer of an earlier version of this paper is thanked for the opinion that a GCM free approach to anthropogenic warming cannot work, concluding: “go get your own GCM”.This work was unfunded, there were no conflicts of interest.

References

  1. Ammann CM, Wahl ER (2007) The importance of the geophysical context in statistical evaluations of climate reconstruction procedures. Clim Change 85:71–88. doi:10.1007/s10584-007-9276-x CrossRefGoogle Scholar
  2. Arrhenius S (1896) On the influence of carbonic acid in the air upon the temperature on the ground. Philos Mag 41:237–276CrossRefGoogle Scholar
  3. Bauer S, Menon E (2012) Aerosol direct, indirect, semidirect, and surface albedo effects from sector contributions based on the IPCC AR5 emissions for preindustrial and present-day conditions. J Geophys Res (Atmos) 117. doi:10.1029/2011JD016816
  4. Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106. doi:10.1029/2005JD006548 CrossRefGoogle Scholar
  5. Foster G, Rahmstorf S (2011) Global temperature evolution 1979–2010. Environ Res Lett 6:044022. doi:10.1088/1748-9326/6/4/044022 CrossRefGoogle Scholar
  6. Frank DC, Esper J, Raible CC, Buntgen U, Trouet V, Stocker B, Joos F (2010) Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature 463(28):527–530. doi:10.1038/nature08769 CrossRefGoogle Scholar
  7. Gao CG, Robock A, Ammann C (2008) Volcanic forcing of climate over the past 1500 years: and improved ice core-based index for climate models. J Geophys Res 113:D23111. doi:10.1029/2008JD010239 CrossRefGoogle Scholar
  8. Hansen J et al (2005) Earth’s energy imbalance: confirmation and implications. Science 308(5727):1431–1435. doi:10.1126/science.1110252 CrossRefGoogle Scholar
  9. Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48:RG4004. doi:10.1029/2010RG000345 CrossRefGoogle Scholar
  10. Huang S (2004) Merging information from different resources for new insights into climate change in the past and future. Geophys Res Lett 31:L13205. doi:10.1029/2004GL019781 CrossRefGoogle Scholar
  11. Krivova NA, Balmaceda L, Solanski SK (2007) Reconstruction of solar total irradiance since 1700 from the surface magnetic field flux. Astron Astrophys 467:335–346. doi:10.1051/0004-6361:20066725 CrossRefGoogle Scholar
  12. Lean JL, Rind DH (2008) How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys Res Lett 35:L18701. doi:10.1029/2008GL034864 CrossRefGoogle Scholar
  13. Ljundqvist FC (2010) A new reconstruction of temperature variability in the extra-tropical Northern Hemisphere during the last two millennia. Geogr Ann Phys Geogr 92A(3):339–351. doi:10.1111/j.1468-0459.2010.00399.x CrossRefGoogle Scholar
  14. Lovejoy S (2013) What is climate? EOS 94(1):1–2CrossRefGoogle Scholar
  15. Lovejoy S (2014) A voyage through scales, a missing quadrillion and why the climate is not what ou expect. Clim Dyn (submitted)Google Scholar
  16. Lovejoy S, Schertzer D (2012a) Low frequency weather and the emergence of the climate. In: Sharma AS, Bunde A, Baker D, Dimri VP (eds) Extreme events and natural hazards: the complexity perspective. AGU monographs, pp 231–254Google Scholar
  17. Lovejoy S, Schertzer D (2012b) Haar wavelets, fluctuations and structure functions: convenient choices for geophysics. Nonlinear Proc Geophys 19:1–14. doi:10.5194/npg-19-1-2012 CrossRefGoogle Scholar
  18. Lovejoy S, Schertzer D (2012c) Stochastic and scaling climate sensitivities: solar, volcanic and orbital forcings. Geophys Res Lett 39:L11702. doi:10.1029/2012GL051871 CrossRefGoogle Scholar
  19. Lovejoy S, Schertzer D (2013) The weather and climate: emergent laws and multifractal cascades. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  20. Lovejoy S, Scherter D, Varon D (2013a) How scaling fluctuation analyses change our view of the climate and its models (Reply to R. Pielke sr.: Interactive comment on “Do GCM’s predict the climate… or macroweather?” by S. Lovejoy et al.). Earth Syst Dyn Discuss 3:C1–C12Google Scholar
  21. Lovejoy S, Schertzer D, Varon D (2013b) Do GCM’s predict the climate… or macroweather? Earth Syst Dyn 4:1–16. doi:10.5194/esd-4-1-2013 Google Scholar
  22. Lovejoy S, Varotsos CA, Efstathiou MN (2014) Scaling analyses of forcings and outputs of a simplified last millennium climate model. J Geophys Res (submitted, March 2014)Google Scholar
  23. Lyman JM, Good SA, Gouretski VV, Ishii M, Johnson GC, Palmer MD, Smith DM, Willis JK (2010) Robust warming of the global upper ocean. Nature 465:334–337. doi:10.1038/nature09043 CrossRefGoogle Scholar
  24. Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787CrossRefGoogle Scholar
  25. Moberg A, Sonnechkin DM, Holmgren K, Datsenko NM (2005) Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433(7026):613–617CrossRefGoogle Scholar
  26. Muller RA, Curry J, Groom D, Jacobsen R, Perlmutter S, Rohde R, Rosenfeld A, Wickham C, Wurtele J (2013) Decadal variations in the global atmospheric land temperatures. J Geophys Res Atmos 118(11):5280–5286CrossRefGoogle Scholar
  27. Myhre G (2009) Consistency between satellite-derived and modeled estimates of the direct aerosol effect. Science 325(5937):187–190. doi:10.1126/science.1174461 CrossRefGoogle Scholar
  28. Myhre G, Myhre A, Stordal F (2001) Historical evolution of radiative forcing of climate. Atmos Environ 35:2361–2373CrossRefGoogle Scholar
  29. Peng C-K, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organisation of DNA nucleotides. Phys Rev E 49:1685–1689CrossRefGoogle Scholar
  30. Peterson TC, Vose RS (1997) An overview of the Global Historical Climatology Network temperature database. Bull Am Meteorol Soc 78:2837–2849. doi:10.1175/1520-0477 CrossRefGoogle Scholar
  31. Rayner NA, Brohan P, Parker DE, Folland CK, Kennedy JJ, Vanicek M, Ansell T, Tett SFB (2006) Improved analyses of changes and uncertainties in marine temperature measured in situ since the mid-nineteenth century: the HadSST2 dataset. J Clim 19:446–469CrossRefGoogle Scholar
  32. Santer BD et al (2013) Identifying human influences on atmospheric temperature. Proc Natl Acad Sci 110(1):26–33. doi:10.1073/pnas.1210514109 CrossRefGoogle Scholar
  33. Smith E, Conception SJ, Andres R, Lurz J (2004), Historical sulfur dioxide emissions 1850–2000: methods and results report. U.S. Department of EnergyGoogle Scholar
  34. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2293CrossRefGoogle Scholar
  35. Wang Y-M, Lean JL, Sheeley NRJ (2005) Modeling the Sun’s magnetic field and irradiance since 1713. Astrophys J 625:522–538CrossRefGoogle Scholar
  36. Wigley TML, Jones PD, Raper SCB (1997) The observed global warming record: what does it tell us? Proc Natl Acad Sci USA 94:8314–8320CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.PhysicsMcGill UniversityMontrealCanada

Personalised recommendations