Skip to main content
Log in

Combined influence of PDO and ENSO on northern Andean glaciers: a case study on the Cotopaxi ice-covered volcano, Ecuador

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This paper describes the application of remote sensing in monitoring the fluctuations in one of the mountain glaciers in the Ecuadorean Andes during the past few decades using ASTER, EO-1 ALI, Landsat MSS, TM and ETM + images. Satellite images were used to calculate the snow line altitudes (SLAs) during the period 1979–2013. Cotopaxi ice covered volcano was studied as representative of Ecuadorian glaciers in the eastern cordillera. Precipitation and air temperature data from various gauging stations within the range of 30 km from the study site and monthly discharge and water level data from a gauging station were also utilized in this study. Anomalies in precipitation and temperature were found to be slightly different in the Cotopaxi region compared to nearby Antizana in the same cordillera and Chimborazo region in the western cordillera. An attempt to correlate the El Niño—southern oscillation phenomenon with the glacier fluctuations in Ecuadorian Andes was done successfully. Cold and warm regimes of Pacific Decadal Oscillation is also considered. The calculated glacier fluctuations obtained were similar to that performed on the nearby Antizana 15 in the eastern cordillera during 1995–2002. Precipitation and temperature anomalies were similar with Antizana 15. It is evident from the research that SLAs were highly fluctuated between the period of occurrence of El Niño and La Niña events. It is also seen that the glacier fluctuations show a negative mass balance trend in during the warm regime of Pacific Decadal Oscillation during the past three decades. Glaciated areas were advanced during the La Nina events in the cold regime of PDO during 1998–2002.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aceituno P (1988) On the functioning of the southern oscillation in the South American sector, part 1: surface climate. Mon Weather Rev 116:505–524

    Article  Google Scholar 

  • Adams JB, Mann ME, Ammann CM (2003) Proxy evidence for an El Niño-like response to volcanic forcing. Nature 426:274–278

    Article  Google Scholar 

  • Arnaud Y, Muller F, Vuille M, Ribstein P (2001) El Niño—southern oscillation (ENSO) influence on a Sajama volcano glacier (Bolivia) from 1963 to 1998 as seen from Landsat data and aerial photography. J Geophys Res 106:17773–17784

    Article  Google Scholar 

  • Barry RG (2006) The status of research on glaciers and global glacier recession: a review. Prog Phys Geogr 30:285–306. doi:10.1191/0309133306pp478ra

    Article  Google Scholar 

  • Bendix J, Lauer A (1992) Die Niederschlagsjahreszeiten in Ecuador und ihre klimadynamische Interpretation. Erdkunde 46:118–134

    Article  Google Scholar 

  • Beniston M, Haeberli W, Hoelzle M, Taylor A (1997) On the potential use of glacier and permafrost observations for verification of climate models. Ann Glaciol 25:400–406

    Google Scholar 

  • Benn DI, Evans DJA (1998) Glaciers and glaciation. Arnold, London

    Google Scholar 

  • Benn DI, Owen LA, Osmaston HA, Seltzer GO, Porter SC, Mark B (2005) Reconstruction of equilibrium-line altitudes for tropical and sub-tropical glaciers. Quat Int 138–139:8–21. doi:10.1016/j.quaint.2005.02.003

    Article  Google Scholar 

  • Bennett MR, Glasser NF (2009) Glacial geology—ice sheets and landforms, 2nd edn. Wiley, London

    Google Scholar 

  • Bolch T, Kamp U (2006) Glacier mapping in high mountains using DEMs, Landsat and ASTER data. In: Proceedings of the 8th international symposium on high mountain remote sensing cartography, pp 37–48

  • Cáceres B (2010) Actualizacion del inventario de tres casquetes glaciares del Ecuador. Dissertation, University of Nice, France, p 84

  • Cáceres B, Ramirez J, Francou B, Eissen JP, Jordan E, Ungerechts L, Maisincho L, Barba D, Cadier E, Bucher R, Penafiel A, Samaniego P, Mothes P (2004) Determinación del volumen del casquete de hielo del volcán cotopaxi, Report, IRD, INAMHI, IG-EPN & INGEOMINAS, INAMHI, Quito, Ecuador, pp 1–54

  • Cadier E, Villacis M, Garces A, Lhuissier P, Maishincho L, Laval R, Paredes D, Caceres B, Francou B (2007) Variations of a low latitude Andean glacier according to global and local climate variations: first results. Glacier Hydrology, IAHS Publ. 318, pp 1–9

  • Chevallier P, Pouyaud B, Suarez W, Condom T (2011) Climate change threats to environment in the tropical Andes: glaciers and water resources. Reg Environ Change 11:179–187

    Article  Google Scholar 

  • Favier V, Wagnon P, Chazarin JP, Maisincho L (2004a) One-year measurements of surface heat budget on the ablation zone of Antizana Glacier 15, Ecuadorian Andes. J Geophys Res 109(D18105):1–15

    Google Scholar 

  • Favier V, Wagnon P, Ribstein P (2004b) Glaciers of the outer and inner tropics: a different behavior but a common response to climate forcing. Geophys Res Lett 31(L16403):1–5

    Google Scholar 

  • Francou B, Ramirez E, Cáceres B, Mendoza J (2000) Glacier evolution in the tropical Andes during the last decades of the twentieth century: Chacaltaya, Bolivia and Antizana, Ecuador. Ambio 29:416–422

    Google Scholar 

  • Francou B, Vuille M, Wagnon P, Mendoza J, Sicart J-E (2003) Tropical climate change recorded by a glacier in the Central Andes during the last decades of the twentieth century: Chacaltaya, Bolivia, 16oS. J Geophys Res 108 (D5, 4154):1–12

    Google Scholar 

  • Francou B, Vuille M, Favier V, Cáceres B (2004) New evidence for an ENSO impact on low-latitude glaciers: Antizana 15, Andes of Ecuador, 0o28′S. J Geophys Res 109(D18106):1–17

    Google Scholar 

  • Frenierre JL (2012) Glacier retreat and the potential increased water resources vulnerability at Volcan Chimborazo, Ecuador, 2012 Fall meeting of the American Geophysical Union, San Francisco, CA, 3–7 Dec 2012

  • Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate. Palaeogeogr Palaeoclimatol Palaeoecol 281:180–195. doi:10.1016/j.palaeo.2007.10.032

    Article  Google Scholar 

  • Ginot P, Schotterer U, Stichler W, Godoi MA, Francou B, Schwikowski M (2010) Influence of the Tungurahua eruption on the ice core records on the Chimborazo, Ecuador. Cryosphere 4:561–568. doi:10.5194/tcd-4-1343-2010

    Article  Google Scholar 

  • Grimm AM, Barros VR, Doyle ME (2000) Climate variability is southern South America associated with El Niño and La Niña events. J Clim 13:35–58

    Article  Google Scholar 

  • Haeberli WJ, Cihlar J, Barry RG (2000) Glacier monitoring within the global climate observing system. Ann Glaciol 31:241–246

    Article  Google Scholar 

  • Haeberli W, Brandova D, Burga C, Egli M, Frauenfelder R, Kääb A, Maisch M, Mauz B, Dikau R (2003) Methods for absolute and relative age dating of rock-glacier surfaces in alpine permafrost. Permafrost, ETH-IGT, Switzerland

  • Haeberli W, Hoelzle M, Paul F, Zemp M (2007) Integrated monitoring of mountain glaciers as key indicators of global climate change: the European Alps. Ann Glaciol 46:150–160

    Article  Google Scholar 

  • Hajdas I, Bonani G, Moreno PI, Ariztegui D (2003) Precise radiocarbon dating of Late-Glacial cooling in mid-latitude South America. Quat Res 59:70–78

    Article  Google Scholar 

  • Hall DK, Ormsby JP, Bindschadler RA, Siddalingaiah H (1987) Characterization of snow and ice reflectance zones on glaciers using Landsat Thematic mapper data. Ann Glaciol 9:104–108

    Google Scholar 

  • Huss M, Farinotti D, Funk M (2011) Ice thickness distribution of all mountain glaciers around the globe using the GLIMS database and SRTM/ASTER DEMs. Geophysical Research Abstracts 13: EGU2011-11799

  • IPCC (2001) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report. In: Houghton JT, Ding Y, Griggs DJ, Nouger M, Linden PJ, Xiaosu D (Eds) Cambridge University Press, UK

  • Jomelli V, Favier V, Rabatel A, Brunstein D, Hoffmann G, Francou B (2009) Fluctuations of glaciers in the tropical Andes over the last millenium and palaeoclimatic implications: a review. Palaeogeogr Palaeoclimatol Palaeoecol 281:269–282. doi:10.1016/j.palaeo.2008.10.033

    Article  Google Scholar 

  • Jordan W, Ungerechts L, Cáceres B, Peñafiel A, Francou B (2005) Estimation by photogrammetry of the glacier recession on the Cotopaxi Volcano (Ecuador) between 1956 and 1997. Hydrol Sci J 50:949–961. doi:10.1623/hysj.2005.50.6.949

    Article  Google Scholar 

  • Joseph R, Nigam S (2006) ENSO evolution and telecommunications in IPCC’s twentieth-century climate simulations: realistic representations? J Clim 19:4360–4377. doi:10.1175/JCLI3846.1

    Article  Google Scholar 

  • Kaser G (1999) A review of the modern fluctuations of tropical glaciers. Global Planet Change 22:93–103

    Article  Google Scholar 

  • Kaser G, Juen I, Georges C, Gómez J, Tamayo W (2003a) The impact of glaciers on the runoff and the reconstruction of mass balance history from hydrological data in the tropical Cordillera Blanca, Peru. J Hydrol 282:130–144. doi:10.1016/S0022-1694(03)00259-2

    Article  Google Scholar 

  • Kaser G, Fountain A, Jansson P (2003b) A manual for monitoring the mass balance of mountain glaciers, International Hydrological Programme—IV. Technical Documents in Hydrology No. 59, UNESCO, Paris

  • Kumar A, Hoerling MP (2003) The nature and cause for the delayed atmospheric response to El Niño. J Clim 16:1391–1403

    Article  Google Scholar 

  • Laraque A, Ronchal J, Cochonneau G, Pombosa R, Guyot JL (2007) Heterogeneous distribution of rainfall and discharge regimes in the Ecuadorian Amazon Basin. J Hydrometeorol 8:1364–1381. doi:10.1175/2007JHM784.1

    Article  Google Scholar 

  • Mantua NJ, Hare SR (2002) The pacific decadal oscillation. J Oceanogr 58:35–44

    Article  Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079

    Article  Google Scholar 

  • Mason SJ, Goddard L (2001) Probabilistic precipitation anomalies associated with ENSO. Bull Am Meteorol Soc 82:619–638

    Article  Google Scholar 

  • National Oceanic and Atmospheric Administration—NOAA (2013). http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_change.shtml. Accessed on 15.05.2013

  • Oerlemans J (1989) On the response of valley glaciers to climatic change In: Glacier fluctuations and climatic change. In: Proceedings of the symposium on glacier fluctuations and climate change, Amsterdam, June 1–5, Kluwer Academic Publishers, Netherlands, pp 353–371

  • Paul F (2000) Evaluation of different methods for glacier mapping using Landsat TM. In: Proceedings of EARSeL-SIG-workshop land ice and snow, Dresden, 16–17 June 2000, pp 239–245

  • Paul F, Huggel C, Kääb A (2004) Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sensing Environ 89:510–518. doi:10.1016/j.rse.2003.11.007

    Article  Google Scholar 

  • Rabatel A, Jomelli V, Naveau P, Francou B, Grancher D (2005) Dating of little ice age glacier fluctuations in the tropical Andes: Charquini glaciers, Bolivia, 16oS. CR Geoscience 337:1311–1322

    Article  Google Scholar 

  • Rabatel A, Bermejo A, Loarte E, Soruco A, Gomez J, Leonardini G, Vincent C, Sicart JE (2012) Can snowline be used as an indicator of the equilibrium line and mass balance for glaciers in the outer tropics? J Glaciol 58:1027–1036

    Article  Google Scholar 

  • Rabatel A, Francou B, Soruco A, Gomez J, Caceres B, Ceballos JL, Basantes R, Vuille M, Sicart JE, Huggel C, Scheel M, Lejeune Y, Arnaud Y, Collet M, Condom T, Consoli G, Favier V, Jomelli V, Galarraga R, Ginot G, Maisincho L, Mendoza J, Menegoz M, Ramirez E, Ribstein P, Suarez W, Villacis M, Wagnon P (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7:81–102. doi:10.5194/tc-7-81-2013

    Article  Google Scholar 

  • Rees WG (2006) Remote sensing of snow and ice. Taylor and Francis, London

    Google Scholar 

  • Rivera A, Bown F, Casassa G, Acuña C, Clavero J (2005) Glacier shrinkage and negative mass balance in the Chilean Lake District (40o S). Hydrological Sciences-Journal-des Sciences Hydrologiques 50:963–974. doi:10.1623/hysj.2005.50.6.963

    Article  Google Scholar 

  • Rodbell DT (1992) Lichenometric and radiocarbon dating of Holocene glaciation, Cordillera Blanca, Peru. The Holocene 2:19–29

    Google Scholar 

  • Ropelewski C, Halpert M (1987) Global and regional scale precipitation patterns associated with El Niño/southern oscillation. Mon Weather Rev 115:1606–1626

    Article  Google Scholar 

  • Sicart JM, Hock R, Ribstein P, Chazarin JP (2010) Sky longwave radiation on tropical Andean glaciers: parameterization and sensitivity to atmospheric variables. J Glaciol 56:854–860

    Article  Google Scholar 

  • Sidjak RW, Wheate RD (1999) Glacier mapping of the Illecillewaet icefield, British Columbia, Canada, using Landsat TM and digital elevation data. Int J Remote Sens 20:273–284

    Article  Google Scholar 

  • Silverio W, Jaquet JM (2005) Glacial cover mapping (1987–1996) of the Cordillera Blanca (Peru) using satellite imagery. Remote Sens Environ 95:342–350

    Article  Google Scholar 

  • Smith JA, Seltzer GO, Rodbell DT, Klein AG (2005) Regional synthesis of last glacial maximum snowlines in the tropical Andes, South America. Quat Int 138–139:145–167. doi:10.1016/j.quaint.2005.02.011

    Article  Google Scholar 

  • Solomina O, Haeberli W, Kull C, Wiles G (2008) Historical and Holocene glacier-climate variations: general concepts and overview. Glob Planet Change 60:1–9. doi:10.1016/j.gloplacha.2007.02.001

    Article  Google Scholar 

  • Surazakov AB, Aizen VB (2006) Estimating volume change of mountain glaciers using SRTM and map-based topographic data. IEEE Trans Geosci Remote Sens 44:2991–2995

    Article  Google Scholar 

  • Trenberth KE (1997) The definition of El Nino. Bull Am Meteorol Soc 78:2771–2777

    Article  Google Scholar 

  • Veettil BK (2009) Use of Landsat TM imagery for mapping debris-covered glaciers in the Karakoram Himalayas, Northern Pakistan. Dissertation, University of Dundee, UK

  • Veettil BK (2012) A Remote sensing approach for monitoring debris-covered glaciers in the high altitude Karakoram Himalayas. Int J Geomat Geosci 2:833–841

    Google Scholar 

  • Veettil BK, Medeiros DS, Grondona AEB (2013) El Nino—southern oscillation (ENSO) influence on the Ice-covered Sajama Volcano, Bolivia, over the last three decades (1984-present). Brazilian Remote Sensing Symposium (SBSR-2013) 2013, Foz do Iguacu, Brazil, 13–18 April 8637–8644

  • Vuille M, Bradley RS, Keimig F (2000a) Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. J Geophys Res 105:447–460

    Google Scholar 

  • Vuille M, Bradley RS, Keimig F (2000b) Climate variability in the Andes of Ecuador and its relation to tropical pacific and Atlantic sea surface temperature anomalies. J Clim 13:2520–2535

    Article  Google Scholar 

  • Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark BG, Bradley RS (2008a) Climate change and tropical Andean glaciers: past, present and future. Earth Sci Rev 89:79–96. doi:10.1016/j.earscirev.2008.04.002

    Article  Google Scholar 

  • Vuille M, Kaser G, Juen I (2008b) Glacier mass balance variability in the Cordillera Blanca, Peru and its relationship with climate and large-scale circulation. Global Planet Change 62:14–28. doi:10.1016/j.gloplacha.2007.11.003

    Article  Google Scholar 

  • Wagnon P, Ribstein P, Francou B, Sicart J-E (2001) Anomalous heat and mass budget of Glacier Zongo, Bolivia, during the 1997/98 El Nino year. J Glaciol 47:21–28

    Article  Google Scholar 

  • Williams R Jr, Hall DK, Sigurdsson O, Chien JYL (1997) Comparison of satellite- derived with ground-based measurements of the fluctuations of the margins of Vatajökull, Iceland, 1973–1992. Ann Glaciol 24:72–80

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge FAPERGS (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul), Brazil, for providing financial support and INAMHI (Instituto Nacional de Meteorologia e Hidrologia), Ecuador, for providing meteorologicl and hydrological data. We would like to thank Dr. Jefferson Cardia Simões, Centro Polar e Climático (CPC), UFRGS for providing infrastructure and software facilities. The first author acknowledges Ms. Geana Veiga Aurelio for her help with statistical data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijeesh Kozhikkodan Veettil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veettil, B.K., Leandro Bayer Maier, É., Bremer, U.F. et al. Combined influence of PDO and ENSO on northern Andean glaciers: a case study on the Cotopaxi ice-covered volcano, Ecuador. Clim Dyn 43, 3439–3448 (2014). https://doi.org/10.1007/s00382-014-2114-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2114-8

Keywords

Navigation