Skip to main content

Advertisement

Log in

Extra-tropical atmospheric response to ENSO in the CMIP5 models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The seasonal mean extra-tropical atmospheric response to El Niño/Southern Oscillation (ENSO) is assessed in the historical and pre-industrial control CMIP5 simulations. This analysis considers two types of El Niño events, characterized by positive sea surface temperature (SST) anomalies in either the central equatorial Pacific (CP) or eastern equatorial Pacific (EP), as well as EP and CP La Niña events, characterized by negative SST anomalies in the same two regions. Seasonal mean geopotential height anomalies in key regions typify the magnitude and structure of the disruption of the Walker circulation cell in the tropical Pacific, upper tropospheric ENSO teleconnections and the polar stratospheric response. In the CMIP5 ensembles, the magnitude of the Walker cell disruption is correlated with the strength of the mid-latitude responses in the upper troposphere i.e., the North Pacific and South Pacific lows strengthen during El Niño events. The simulated responses to El Niño and La Niña have opposite sign. The seasonal mean extra-tropical, upper tropospheric responses to EP and CP events are indistinguishable. The ENSO responses in the MERRA reanalysis lie within the model scatter of the historical simulations. Similar responses are simulated in the pre-industrial and historical CMIP5 simulations. Overall, there is a weak correlation between the strength of the tropical response to ENSO and the strength of the polar stratospheric response. ENSO-related polar stratospheric variability is best simulated in the “high-top” subset of models with a well-resolved stratosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnections. J Geophys Res 112:C11007. doi:10.1029/2006JC003798

    Article  Google Scholar 

  • Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2013) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn. doi:10.1007/s00382-013-1783-z

    Google Scholar 

  • Brown JR, Moise AF, Colman RA (2013) The South Pacific convergence zone in CMIP5 simulations of historical and future climate. Clim Dyn 41:2179–2197. doi:10.1007/s00382-012-1591-x

    Article  Google Scholar 

  • Calvo Fernandez N, Garcia RR, Garcia Herrera R, Gallego Puyol D, Gimeno Presa L, Hernandez Martin E, Ribera Rodriguez P (2004) Analysis of the ENSO signal in tropospheric and stratospheric temperatures observed by MSU, 1979–2000. J Climate 17:3934–3946

    Article  Google Scholar 

  • Charlton-Perez AJ et al (2013) On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J Geophys Res 118:2494. doi:10.1002/jgrd.50125

    Google Scholar 

  • DeWeaver E, Nigam S (2002) Linearity in ENSO’s atmospheric response. J Climate 15:2446–2461

    Article  Google Scholar 

  • García-Herrera R, Calvo N, García RR, Giorgetta MA (2006) Propagation of ENSO temperature signals into the middle atmosphere: a comparison of two general circulation models and ERA–40 reanalysis data. J Geophys Res 111:D06101. doi:10.1029/2005JD006061

    Google Scholar 

  • Garfinkel CI, Hartmann DL (2008) Different ENSO teleconnections and their effects on the stratospheric polar vortex. J Geophys Res 113:D18114. doi:10.1029/2008JD009920

    Article  Google Scholar 

  • Garfinkel CI, Hurwitz MM, Waugh DW, Butler AH (2012a) Are the teleconnections of Central Pacific and Eastern Pacific El Niño distinct in boreal wintertime? Clim Dyn. doi:10.1007/s00382-012-1570-2

    Google Scholar 

  • Garfinkel CI, Butler AH, Waugh DW, Hurwitz MM, Polvani LM (2012b) Why might stratospheric sudden warmings occur with similar frequency in El Niño and La Niña winters? J Geophys Res 117:D19106. doi:10.1029/2012JD017777

    Google Scholar 

  • Graf H, Zanchettin D (2012) Central Pacific El Niño, the subtropical bridge, and Eurasian climate. J Geophys Res 117:D01102. doi:10.1029/2011JD016493

    Google Scholar 

  • Hegyi BM, Deng Y (2011) A dynamical fingerprint of tropical Pacific sea surface temperatures on the decadal-scale variability of cool-season Arctic precipitation. J Geophys Res 116:D20. doi:10.1029/2011JD016001

    Google Scholar 

  • Hoerling MP, Kumar A, Zhong M (1997) El Niño, La Niña, and the nonlinearity of their teleconnections. J Climate 10:1769–1786

    Article  Google Scholar 

  • Hurwitz MM, Newman PA, Oman LD, Molod AM (2011a) Response of the Antarctic stratosphere to two types of El Niño events. J Atm Sci 68:812–822. doi:10.1175/2011JAS3606.1

    Article  Google Scholar 

  • Hurwitz MM, Song I-S, Oman LD, Newman PA, Molod AM, Frith SM, Nielsen JE (2011b) Response of the Antarctic stratosphere to warm pool El Niño events in the GEOS CCM. Atm Chem Phys 11:9659–9669. doi:10.5194/acp-11-9659-2011

    Article  Google Scholar 

  • Hurwitz MM, Garfinkel CI, Newman PA, Oman LD (2013) Sensitivity of the atmospheric response to warm pool El Niño events to modeled SSTs and future climate forcings. J Geophys Res 118:13. doi:10.1002/2013JD021051

    Article  Google Scholar 

  • Kim ST, Yu J-Y (2012) The two types of ENSO in CMIP5 models. Geophys Res Lett 39:L11704. doi:10.1029/2012GL052006

    Google Scholar 

  • Kug J-S, Ham Y-G (2011) Are there two types of La Niña? Geophys Res Lett 38:L16704. doi:10.1029/2011GL048237

    Google Scholar 

  • Kug J-S, Jin F-F, An S-I (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Climate 22:1499–1515

    Article  Google Scholar 

  • Kug J-S, Ham Y-G, Lee J-Y, Jin F-F (2012) Improved simulation of two types of El Niño in CMIP5 models. Environ Res Lett 7:034002. doi:10.1088/1748-9326/7/3/034002

    Article  Google Scholar 

  • Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. B Am Meteorol Soc 77:1275–1277

    Google Scholar 

  • Manzini E, Giorgetta MA, Esch M, Kornblueh L, Roeckner E (2006) The influence of sea surface temperatures on the Northern winter stratosphere: ensemble simulations with the MAECHAM5 model. J Climate 19:3863–3881

    Article  Google Scholar 

  • Mitchell DM, Gray LJ, Charlton-Perez AJ (2011) The structure and evolution of the stratospheric vortex in response to natural forcings. J Geophys Res 116:D15110. doi:10.1029/2011JD015788

    Article  Google Scholar 

  • Mo KC, Paegle JN (2001) The Pacific-South American modes and their downstream effects. International J Climatology 21:1211–1229. doi:10.1002/joc.685

    Article  Google Scholar 

  • Polade SD, Gershunov A, Cayan DR, Dettinger MD, Pierce DW (2013) Natural climate variability and teleconnections to precipitation over the Pacific-North American region in CMIP3 and CMIP5 models. Geophys Res Lett 40:2296. doi:10.1002/grl.50491

    Article  Google Scholar 

  • Randel WJ, Garcia R, Calvo N, Marsh D (2009) ENSO influence on zonal mean temperature and ozone in the tropical lower stratosphere. Geophys Res Lett 36:L15822. doi:10.1029/2009GL039343

    Google Scholar 

  • Rienecker MM et al (2011) MERRA—NASA’s modern-era retrospective analysis for research and applications. J Climate 24:3624–3648. doi:10.1175/JCLI-D-11-00015.1

    Article  Google Scholar 

  • Schneider DP, Okumura Y, Deser C (2012) Observed Antarctic interannual climate variability and tropical linkages. J Climate 25:4048–4066. doi:10.1175/JCLI-D-11-00273.1

    Article  Google Scholar 

  • Song H-J, Choi E, Lim G-H, Kim YH, Kug J-S, Yeh S-W (2011) The central Pacific as the export region of the El Niño-Southern oscillation sea surface temperature anomaly to Antarctic sea ice. J Geophys Res 116:D21112. doi:10.1029/2011JD015645

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experimental design. Bull Am Met Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Wea Rev 109:784–812

    Article  Google Scholar 

  • Xie F, Li JP, Tian WS, Feng J (2012) Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atm Chem Phys 12:5259. doi:10.5194/acp-12-5259-2012

    Article  Google Scholar 

  • Xue Y, Smith TM, Reynolds RW (2003) Interdecadal changes of 30–yr SST normals during 1871–2000. J Climate 16:1601–1612

    Article  Google Scholar 

  • Zubiaurre I, Calvo N (2012) The El Niño-Southern Oscillation (ENSO) Modoki signal in the stratosphere. J Geophys Res 117:D04104. doi:10.1029/2011JD016690

    Google Scholar 

Download references

Acknowledgments

Margaret M. Hurwitz thanks the NASA Atmospheric Composition, Modeling and Analysis Program (ACMAP) and Modeling, Analysis and Prediction (MAP) program for funding, and the World Climate Research Programme (WCRP) and Stratospheric Processes and their Role in Climate (SPARC) DynVar for travel support. Sarah Ineson was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). The authors thank two anonymous reviewers for their helpful feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret M. Hurwitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurwitz, M.M., Calvo, N., Garfinkel, C.I. et al. Extra-tropical atmospheric response to ENSO in the CMIP5 models. Clim Dyn 43, 3367–3376 (2014). https://doi.org/10.1007/s00382-014-2110-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2110-z

Keywords

Navigation