Climate Dynamics

, Volume 43, Issue 12, pp 3367–3376 | Cite as

Extra-tropical atmospheric response to ENSO in the CMIP5 models

  • Margaret M. Hurwitz
  • Natalia Calvo
  • Chaim I. Garfinkel
  • Amy H. Butler
  • Sarah Ineson
  • Chiara Cagnazzo
  • Elisa Manzini
  • Cristina Peña-Ortiz


The seasonal mean extra-tropical atmospheric response to El Niño/Southern Oscillation (ENSO) is assessed in the historical and pre-industrial control CMIP5 simulations. This analysis considers two types of El Niño events, characterized by positive sea surface temperature (SST) anomalies in either the central equatorial Pacific (CP) or eastern equatorial Pacific (EP), as well as EP and CP La Niña events, characterized by negative SST anomalies in the same two regions. Seasonal mean geopotential height anomalies in key regions typify the magnitude and structure of the disruption of the Walker circulation cell in the tropical Pacific, upper tropospheric ENSO teleconnections and the polar stratospheric response. In the CMIP5 ensembles, the magnitude of the Walker cell disruption is correlated with the strength of the mid-latitude responses in the upper troposphere i.e., the North Pacific and South Pacific lows strengthen during El Niño events. The simulated responses to El Niño and La Niña have opposite sign. The seasonal mean extra-tropical, upper tropospheric responses to EP and CP events are indistinguishable. The ENSO responses in the MERRA reanalysis lie within the model scatter of the historical simulations. Similar responses are simulated in the pre-industrial and historical CMIP5 simulations. Overall, there is a weak correlation between the strength of the tropical response to ENSO and the strength of the polar stratospheric response. ENSO-related polar stratospheric variability is best simulated in the “high-top” subset of models with a well-resolved stratosphere.


ENSO Stratosphere Teleconnections CMIP5 



Margaret M. Hurwitz thanks the NASA Atmospheric Composition, Modeling and Analysis Program (ACMAP) and Modeling, Analysis and Prediction (MAP) program for funding, and the World Climate Research Programme (WCRP) and Stratospheric Processes and their Role in Climate (SPARC) DynVar for travel support. Sarah Ineson was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). The authors thank two anonymous reviewers for their helpful feedback.


  1. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnections. J Geophys Res 112:C11007. doi: 10.1029/2006JC003798 CrossRefGoogle Scholar
  2. Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2013) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn. doi: 10.1007/s00382-013-1783-z Google Scholar
  3. Brown JR, Moise AF, Colman RA (2013) The South Pacific convergence zone in CMIP5 simulations of historical and future climate. Clim Dyn 41:2179–2197. doi: 10.1007/s00382-012-1591-x CrossRefGoogle Scholar
  4. Calvo Fernandez N, Garcia RR, Garcia Herrera R, Gallego Puyol D, Gimeno Presa L, Hernandez Martin E, Ribera Rodriguez P (2004) Analysis of the ENSO signal in tropospheric and stratospheric temperatures observed by MSU, 1979–2000. J Climate 17:3934–3946CrossRefGoogle Scholar
  5. Charlton-Perez AJ et al (2013) On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J Geophys Res 118:2494. doi: 10.1002/jgrd.50125 Google Scholar
  6. DeWeaver E, Nigam S (2002) Linearity in ENSO’s atmospheric response. J Climate 15:2446–2461CrossRefGoogle Scholar
  7. García-Herrera R, Calvo N, García RR, Giorgetta MA (2006) Propagation of ENSO temperature signals into the middle atmosphere: a comparison of two general circulation models and ERA–40 reanalysis data. J Geophys Res 111:D06101. doi: 10.1029/2005JD006061 Google Scholar
  8. Garfinkel CI, Hartmann DL (2008) Different ENSO teleconnections and their effects on the stratospheric polar vortex. J Geophys Res 113:D18114. doi: 10.1029/2008JD009920 CrossRefGoogle Scholar
  9. Garfinkel CI, Hurwitz MM, Waugh DW, Butler AH (2012a) Are the teleconnections of Central Pacific and Eastern Pacific El Niño distinct in boreal wintertime? Clim Dyn. doi: 10.1007/s00382-012-1570-2 Google Scholar
  10. Garfinkel CI, Butler AH, Waugh DW, Hurwitz MM, Polvani LM (2012b) Why might stratospheric sudden warmings occur with similar frequency in El Niño and La Niña winters? J Geophys Res 117:D19106. doi: 10.1029/2012JD017777 Google Scholar
  11. Graf H, Zanchettin D (2012) Central Pacific El Niño, the subtropical bridge, and Eurasian climate. J Geophys Res 117:D01102. doi: 10.1029/2011JD016493 Google Scholar
  12. Hegyi BM, Deng Y (2011) A dynamical fingerprint of tropical Pacific sea surface temperatures on the decadal-scale variability of cool-season Arctic precipitation. J Geophys Res 116:D20. doi: 10.1029/2011JD016001 Google Scholar
  13. Hoerling MP, Kumar A, Zhong M (1997) El Niño, La Niña, and the nonlinearity of their teleconnections. J Climate 10:1769–1786CrossRefGoogle Scholar
  14. Hurwitz MM, Newman PA, Oman LD, Molod AM (2011a) Response of the Antarctic stratosphere to two types of El Niño events. J Atm Sci 68:812–822. doi: 10.1175/2011JAS3606.1 CrossRefGoogle Scholar
  15. Hurwitz MM, Song I-S, Oman LD, Newman PA, Molod AM, Frith SM, Nielsen JE (2011b) Response of the Antarctic stratosphere to warm pool El Niño events in the GEOS CCM. Atm Chem Phys 11:9659–9669. doi: 10.5194/acp-11-9659-2011 CrossRefGoogle Scholar
  16. Hurwitz MM, Garfinkel CI, Newman PA, Oman LD (2013) Sensitivity of the atmospheric response to warm pool El Niño events to modeled SSTs and future climate forcings. J Geophys Res 118:13. doi: 10.1002/2013JD021051 CrossRefGoogle Scholar
  17. Kim ST, Yu J-Y (2012) The two types of ENSO in CMIP5 models. Geophys Res Lett 39:L11704. doi: 10.1029/2012GL052006 Google Scholar
  18. Kug J-S, Ham Y-G (2011) Are there two types of La Niña? Geophys Res Lett 38:L16704. doi: 10.1029/2011GL048237 Google Scholar
  19. Kug J-S, Jin F-F, An S-I (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Climate 22:1499–1515CrossRefGoogle Scholar
  20. Kug J-S, Ham Y-G, Lee J-Y, Jin F-F (2012) Improved simulation of two types of El Niño in CMIP5 models. Environ Res Lett 7:034002. doi: 10.1088/1748-9326/7/3/034002 CrossRefGoogle Scholar
  21. Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. B Am Meteorol Soc 77:1275–1277Google Scholar
  22. Manzini E, Giorgetta MA, Esch M, Kornblueh L, Roeckner E (2006) The influence of sea surface temperatures on the Northern winter stratosphere: ensemble simulations with the MAECHAM5 model. J Climate 19:3863–3881CrossRefGoogle Scholar
  23. Mitchell DM, Gray LJ, Charlton-Perez AJ (2011) The structure and evolution of the stratospheric vortex in response to natural forcings. J Geophys Res 116:D15110. doi: 10.1029/2011JD015788 CrossRefGoogle Scholar
  24. Mo KC, Paegle JN (2001) The Pacific-South American modes and their downstream effects. International J Climatology 21:1211–1229. doi: 10.1002/joc.685 CrossRefGoogle Scholar
  25. Polade SD, Gershunov A, Cayan DR, Dettinger MD, Pierce DW (2013) Natural climate variability and teleconnections to precipitation over the Pacific-North American region in CMIP3 and CMIP5 models. Geophys Res Lett 40:2296. doi: 10.1002/grl.50491 CrossRefGoogle Scholar
  26. Randel WJ, Garcia R, Calvo N, Marsh D (2009) ENSO influence on zonal mean temperature and ozone in the tropical lower stratosphere. Geophys Res Lett 36:L15822. doi: 10.1029/2009GL039343 Google Scholar
  27. Rienecker MM et al (2011) MERRA—NASA’s modern-era retrospective analysis for research and applications. J Climate 24:3624–3648. doi: 10.1175/JCLI-D-11-00015.1 CrossRefGoogle Scholar
  28. Schneider DP, Okumura Y, Deser C (2012) Observed Antarctic interannual climate variability and tropical linkages. J Climate 25:4048–4066. doi: 10.1175/JCLI-D-11-00273.1 CrossRefGoogle Scholar
  29. Song H-J, Choi E, Lim G-H, Kim YH, Kug J-S, Yeh S-W (2011) The central Pacific as the export region of the El Niño-Southern oscillation sea surface temperature anomaly to Antarctic sea ice. J Geophys Res 116:D21112. doi: 10.1029/2011JD015645 CrossRefGoogle Scholar
  30. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experimental design. Bull Am Met Soc 93:485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  31. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Wea Rev 109:784–812CrossRefGoogle Scholar
  32. Xie F, Li JP, Tian WS, Feng J (2012) Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atm Chem Phys 12:5259. doi: 10.5194/acp-12-5259-2012 CrossRefGoogle Scholar
  33. Xue Y, Smith TM, Reynolds RW (2003) Interdecadal changes of 30–yr SST normals during 1871–2000. J Climate 16:1601–1612CrossRefGoogle Scholar
  34. Zubiaurre I, Calvo N (2012) The El Niño-Southern Oscillation (ENSO) Modoki signal in the stratosphere. J Geophys Res 117:D04104. doi: 10.1029/2011JD016690 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Margaret M. Hurwitz
    • 1
    • 2
  • Natalia Calvo
    • 3
  • Chaim I. Garfinkel
    • 4
  • Amy H. Butler
    • 5
  • Sarah Ineson
    • 6
  • Chiara Cagnazzo
    • 7
  • Elisa Manzini
    • 8
  • Cristina Peña-Ortiz
    • 9
  1. 1.Goddard Earth Sciences Technology and Research (GESTAR)Morgan State UniversityBaltimoreUSA
  2. 2.NASA Goddard Space Flight CenterGreenbeltUSA
  3. 3.Universidad Complutense de MadridMadridSpain
  4. 4.Hebrew UniversityJerusalemIsrael
  5. 5.CIRES/NOAA Earth Science Research LaboratoryBoulderUSA
  6. 6.Met Office Hadley CentreExeterUK
  7. 7.Istituto di Fisica dell’Atmosfera e del ClimaConsiglio Nazionale delle Ricerche (ISAC–CNR)RomeItaly
  8. 8.Max Planck Institute for MeteorologyHamburgGermany
  9. 9.Universidad Pablo de OlavideSevilleSpain

Personalised recommendations