Skip to main content

Precipitation response to La Niña and global warming in the Indo-Pacific

Abstract

Recent studies have highlighted the nonlinear rainfall response to El Niño sea surface temperature (SST) events in the Indo-Pacific region and how this response might change over coming decades. Here we investigate the response to La Niña SST anomalies with and without global warming by performing idealised SST-forced experiments with an atmospheric general circulation model. The La Niña SST anomaly is multiplied by a factor \(1 \le \alpha \le 4\) and added to climatological SSTs. Similar experiments using El Niño SST anomalies were previously performed, in which large nonlinearities in the precipitation response were evident. We find that: (i) Under current climatic conditions, as \(\alpha\) increases, the precipitation responds in three ways: the intertropical convergence zone (ITCZ) dries and moves poleward, the maximum precipitation along the equator moves west, and the South Pacific convergence zone (SPCZ) narrows, intensifies, and elongates. For weak (\(\alpha = 1\)) La Niña events, the precipitation anomalies approximately mirror those from the El Niño events along the ITCZ and SPCZ, though there are some marked differences in the central-eastern Pacific. For stronger La Niña events (\(\alpha > 1\)), precipitation responds nonlinearly to SST anomalies, though the nonlinearities are smaller and differ spatially from the nonlinearities in the El Niño runs. (ii) The addition of a global warming SST pattern increases rainfall in the western Pacific and SPCZ, enhances the narrowing of the SPCZ, and increases the nonlinear response in the western Pacific. However, large La Niña events reduce the impact of global warming along the central-eastern equatorial Pacific as the global warming and La Niña SST anomalies have opposite signs in that region. (iii) The response to La Niña SST anomalies is driven primarily by changes in the atmospheric circulation, whereas the response to the global warming SST pattern is mainly driven by increases in atmospheric moisture. (iv) Large changes in La Niña-driven rainfall anomalies can occur in response to global warming, even if the La Nina SST anomalies relative to the warmer background state are completely unchanged.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Australian Bureau of Meteorology and CSIRO (2011) Climate change in the Pacific: scientific assessment and new research. Volume 1: regional overview. Volume 2: country reports.

  • Bradley R, Diaz HF, en Eischeid JK (1987) ENSO signal in conitnental precipitation records. Nature 327:497–501

    Article  Google Scholar 

  • Brown J, Moise A, Delage F (2012) Changes in the South Pacific convergence zone in IPCC AR4 future climate projections. Clim Dyn 39:1–19. doi:10.1007/s00382-011-1192-0

    Article  Google Scholar 

  • Brown JN, Sen Gupta A, Brown JR, Muir LC, Risbey JS, Whetton P, Zhang X, Ganachaud A, Murphy B, Wijffels SE (2013) Implications of CMIP3 model biases and uncertainties for climate projections in the western tropical Pacific. Clim Change. doi:10.1007/s10584-012-0603-5

  • Cai W, van Rensch P, Cowan T, Sullivan A (2010) Asymmetry in ENSO teleconnection with regional rainfall, its multidecadal variability, and impact. J Clim 23:4944–4955

    Article  Google Scholar 

  • Cai W, Lengaigne M, Borlace S, Collins M, Cowan T, McPhaden M, Timmermann A, Power S, Brown J, Menkes C, Ngari A, Vincent E, Widlansky M, (2012) More extreme swings of the South Pacific convergence zone due to greenhouse warming. Nature 488:365–369

    Google Scholar 

  • Chiang JC, Kushnir Y, Zebiak SE (2000) Interdecadal changes in eastern Pacific ITCZ variability and its influence on the Atlantic ITCZ. Geophys Res Lett 27:3687–3690

    Article  Google Scholar 

  • Chung CTY, Power SB, Arblaster JM, Rashid H, Roff GL (2013) Nonlinear precipitation response to El Niño and global warming in the Indo-Pacific. Clim Dyn. doi:10.1007/s00382-013-1892-8

  • Collins M, An SI, Cai W, Ganachaud A, Guilyardi E, Jin FF, Jochum M, Lengaigne M, Power S, Timmermann A, Vecchi G, Wittenberg A (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nat Geosci 3:391–397

    Article  Google Scholar 

  • Dommenget D, Bayr T, Frauen C (2013) Analysis of the non-linearity in the pattern and time evolution of El Niño Southern Oscillation. Clim Dyn 40:2825–2847

    Article  Google Scholar 

  • Hoerling MP, Kumar A, Zhong M (1997) El Niño, La Niña, and the nonlinearity of their teleconnections. J Clim 10:1769–1786

    Article  Google Scholar 

  • Hoerling MP, Kumar A, Xu TY (2001) Robustness of the nonlinear atmospheric response to opposite phases of ENSO. J Clim 14:1277–1293

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP version 2.1. Geophys Res Lett 36(L17):808 doi:10.1029/2009GL040000

    Google Scholar 

  • Hurrell JW, Hack JH, Shea D, Caron JM, Rosinski J, (2008) A new sea surface temperature and sea ice boundary dataset for the community atmosphere model. J Clim 21:5145–5153. doi:10.1175/2008JCLI2292.1

    Google Scholar 

  • Kug JS, Ham YG (2011) Are there two types of La Niña. Geophys Res Lett 38:16704–16710

    Google Scholar 

  • Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515

    Article  Google Scholar 

  • Lau KM, Boyle JS (1987) Tropical and extratropical forcing of the large-scale circulation: a diagnostic study. Mon Weather Rev 115:400–428

    Article  Google Scholar 

  • Lin JL (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs: ocean atmosphere feedback analysis. J Clim 20:4497–4525. doi:10.1175/JCLI4272.1

    Article  Google Scholar 

  • Martin GM, Milton SF, Senior CA, Brooks ME, Ineson S (2010) Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. J Clim 23:5933–5957

    Google Scholar 

  • Martin GM, Bellouin N, Collins WJ, Culverwell ID, Halloran PR, Hardiman SC, Hinton TJ, Jones CD, McDonald RE, McLaren AJ, O’Connor FM, Roberts MJ, Rodriguez JM, Woodward S, Best MJ, Brooks ME, Brown AR, Butchart N, Dearden C, Derbyshire SH, Dharssi I, Doutriaux-Boucher M, Edwards JM, Falloon PD, Gedney N, Gray LJ, Hewitt HT, Hobson M, Huddleston MR, Hughes J, Ineson S, Ingram WJ, James PM, Johns TC, Johnson CE, Jones A, Jones CP, Joshi MM, Keen AB, Liddicoat S, Lock AP, Maidens AV, Manners JC, Milton SF, Rae JGL, Ridley JK, Sellar A, Senior CA, Totterdell IJ, Verhoef A, Vidale PL, Wiltshire A (2011) The HadGEM2 family of met office unified model climate configurations. Geosci Model Dev Discuss 4(2):765–841. doi:10.5194/gmdd-4-765-2011

    Article  Google Scholar 

  • Meehl G, Stocker TF, Collins W, FriedlingsteinP, Gaye A, Gregory J, Kitoh A, Knutti R, Murphy J, Noda A, Raper S, Watterson I, Weaver A, Zhao ZC (2007) Global climate projections. In: Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  • Meehl GA (1987) The Annual Cycle and Interannual Variability in the Tropical Pacific and Indian Ocean Regions. Mon Wea Rev 115:27–50. doi:10.1175/1520-0493(1987)115<0027:TACAIV>2.0.CO;2

  • Monahan AH, Dai A (2004) The spatial and temporal structure of ENSO nonlinearity. J Clim 17(15):3026–3036. doi:10.1175/1520-0442(2004)0173026:TSATSO2.0.CO;2

    Google Scholar 

  • Mullan AB (1996) Non-linear effects of the southern oscillation in the New Zealand region. Austral Meteorol Mag 45:83–99

    Google Scholar 

  • Münnich M, Neelin JD (2005) Seasonal influence of ENSO on the Atlantic ITCZ and equatorial South America. Geophys Res Lett 32(L21):709

    Google Scholar 

  • Ohba M, Ueda H (2009) Role of nonlinear atmospheric response to SST on the asymmetric transition process of ENSO. J Clim 22:177–192

    Article  Google Scholar 

  • Okumura YM, Deser C (2010) Asymmetry in the duration of El Niño and La Niña. J Clim 23:5826–5843

    Article  Google Scholar 

  • Philander S (1990) El Niño, La Niña, and the Southern Oscillation. Academic Press, New York

    Google Scholar 

  • Power S, Haylock M, Colman R, Wang X (2006) The predictability of interdecadal changes in ENSO and ENSO teleconnections. J Clim 19:4755–4771

    Article  Google Scholar 

  • Power S, Smith IN (2007), Weakening of the walker circulation and apparent dominance of El Niño both reach record levels, but has ENSO really changed? Geophys Res Lett 34:L187024

    Google Scholar 

  • Power S, Delage F, Chung C, Kociuba G, Keay K (2013) Robust twenty-first-century projections of ElNiño and related precipitation variability. Nature 502(7472):541–545

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1989) Precipitation Patterns Associated with the High Index Phase of the Southern Oscillation. Journal of Climate 2:268–284. doi:10.1175/1520-0442(1989)002<0268:PPAWTH>2.0.CO;2

  • Seager R, Naik N, Vecchi G (2010) Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J Clim 23:4651–4668. doi:10.1175/2010JCLI3655.1

    Article  Google Scholar 

  • Seager R, Naik N, Vogel L (2012) Does global warming cause intensified interannual hydroclimate variability? J Clim 25:3355–3372. doi:10.1175/JCLI-D-11-00363.1

    Article  Google Scholar 

  • Streten NA (1973) Some characteristics of satellite-observed bands of persistent cloudiness over the southern hemisphere. Mon Weather Rev 101:486–495. doi:10.1175/1520-0493(1973)101<0486:SCOSBO>2.3.CO;2

  • Trenberth KE (1976) Spatial and temporal variations of the Southern Oscillation. Q J R Meteorol Soc 102(433):639–653. doi:10.1002/qj.49710243310

  • Vecchi GA, Wittenberg AT (2010) El Niño and our future climate: where do we stand? Wiley Interdiscip Rev Clim Change 1:260–270

    Google Scholar 

  • Vincent DG (1994) The South Pacific convergence zone (SPCZ): a review. Mon Weather Rev 122:1949–1970

    Article  Google Scholar 

  • Vincent E, Lengaigne M, Menkes C, Jourdain N, Marchesiello P, Madec G (2011) Interannual variability of the South Pacific convergence zone and implications for tropical cyclone genesis. Clim Dyn 36:1881–1896

    Article  Google Scholar 

  • Waliser DE, Gautier C (1993) A satellite-derived climatology of the ITCZ. J Clim 6:2162–2174

    Article  Google Scholar 

  • Widlansky MJ, Webster PJ, Hoyos CD (2011) On the location and orientation of the South Pacific convergence zone. Clim Dyn 36:561–578

    Article  Google Scholar 

  • Widlansky MJ, Timmermann A, Stein K, McGregor S, Schneider N, England MH, Lengaigne M, Cai W (2012) Changes in South Pacific rainfall bands in a warming climate. Nat Clim Change 3:417–423. doi:10.1038/nclimate1726

    Article  Google Scholar 

  • Wu B, Li T, Zhou T (2010) Asymmetry of atmospheric circulation anomalies over the western North Pacific between El Niño and La Niña. J Clim 23:4807–4822

    Article  Google Scholar 

  • Yeh S, Kug J, Dewitte B, Kwon M, Kirtman B, Jin F (2009) El Niño in a changing climate. Nature 461:511–514

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Pacific-Australia Climate Change Science and Adaptation Planning Program (PACCSAP) and by the Australian Government Department of the Environment, the Bureau of Meteorology and CSIRO through the Australian Climate Change Science Programme. We would like to thank anonymous reviewers, Julie Arblaster and Eun-Pa Lim for very helpful comments on the manuscript. We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset. Support of this dataset is provided by the Office of Science, U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine T. Y. Chung.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chung, C.T.Y., Power, S.B. Precipitation response to La Niña and global warming in the Indo-Pacific. Clim Dyn 43, 3293–3307 (2014). https://doi.org/10.1007/s00382-014-2105-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2105-9

Keywords

  • El Niño Southern Oscillation
  • Global warming
  • Climate change
  • Climate variability