Climate Dynamics

, Volume 43, Issue 9–10, pp 2607–2627 | Cite as

Global warming and 21st century drying

  • Benjamin I. Cook
  • Jason E. Smerdon
  • Richard Seager
  • Sloan Coats
Article

Abstract

Global warming is expected to increase the frequency and intensity of droughts in the twenty-first century, but the relative contributions from changes in moisture supply (precipitation) versus evaporative demand (potential evapotranspiration; PET) have not been comprehensively assessed. Using output from a suite of general circulation model (GCM) simulations from phase 5 of the Coupled Model Intercomparison Project, projected twenty-first century drying and wetting trends are investigated using two offline indices of surface moisture balance: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). PDSI and SPEI projections using precipitation and Penman-Monteith based PET changes from the GCMs generally agree, showing robust cross-model drying in western North America, Central America, the Mediterranean, southern Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere high latitudes and east Africa (PDSI only). The SPEI is more sensitive to PET changes than the PDSI, especially in arid regions such as the Sahara and Middle East. Regional drying and wetting patterns largely mirror the spatially heterogeneous response of precipitation in the models, although drying in the PDSI and SPEI calculations extends beyond the regions of reduced precipitation. This expansion of drying areas is attributed to globally widespread increases in PET, caused by increases in surface net radiation and the vapor pressure deficit. Increased PET not only intensifies drying in areas where precipitation is already reduced, it also drives areas into drought that would otherwise experience little drying or even wetting from precipitation trends alone. This PET amplification effect is largest in the Northern Hemisphere mid-latitudes, and is especially pronounced in western North America, Europe, and southeast China. Compared to PDSI projections using precipitation changes only, the projections incorporating both precipitation and PET changes increase the percentage of global land area projected to experience at least moderate drying (PDSI standard deviation of ≤−1) by the end of the twenty-first century from 12 to 30 %. PET induced moderate drying is even more severe in the SPEI projections (SPEI standard deviation of ≤−1; 11 to 44 %), although this is likely less meaningful because much of the PET induced drying in the SPEI occurs in the aforementioned arid regions. Integrated accounting of both the supply and demand sides of the surface moisture balance is therefore critical for characterizing the full range of projected drought risks tied to increasing greenhouse gases and associated warming of the climate system.

Keywords

Drought CMIP5 Global warming PDSI SPEI 

References

  1. Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419(6903):224–232. doi:10.1038/nature01092 CrossRefGoogle Scholar
  2. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56Google Scholar
  3. Anderson DB (1936) Relative humidity or vapor pressure deficit. Ecology 17(2):277–282CrossRefGoogle Scholar
  4. Barnett TP, Pierce DW (2009) Sustainable water deliveries from the Colorado River in a changing climate. Proc Nat Acad Sci 106(18):7334–7338. doi:10.1073/pnas.0812762106 CrossRefGoogle Scholar
  5. Barrera-Escoda A, Gonçalves M, Guerreiro D, Cunillera J, Baldasano JM (2013) Projections of temperature and precipitation extremes in the North Western Mediterranean Basin by dynamical downscaling of climate scenarios at high resolution (1971–2050). Climatic Change pp 1–16. doi:10.1007/s10584-013-1027-6
  6. Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323(5911):240–244. doi:10.1126/science.1164363 CrossRefGoogle Scholar
  7. Betts AK, Ball JH, Beljaars ACM, Miller MJ, Viterbo PA (1996) The land surface-atmosphere interaction: a review based on observational and global modeling perspectives. J Geophys Res: Atmospheres 101(D3):7209–7225. doi:10.1029/95JD02135 CrossRefGoogle Scholar
  8. Bonsal BR, Aider R, Gachon P, Lapp S (2013) An assessment of Canadian prairie drought: past, present, and future. Clim Dyn 41(2):501–516. doi:10.1007/s00382-012-1422-0 CrossRefGoogle Scholar
  9. Burke EJ (2011) Understanding the sensitivity of different drought metrics to the drivers of drought under increased atmospheric CO2. J Hydrometeorol 12(6):1378–1394. doi:10.1175/2011JHM1386.1 CrossRefGoogle Scholar
  10. Burke EJ, Brown SJ (2008) Evaluating uncertainties in the projection of future drought. J Hydrometeorol 9(2):292–299. doi:10.1175/2007JHM929.1 CrossRefGoogle Scholar
  11. Burke EJ, Brown SJ, Christidis N (2006) Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model. J Hydrometeorol 7(5):1113–1125. doi:10.1175/JHM544.1 CrossRefGoogle Scholar
  12. Cao L, Bala G, Caldeira K, Nemani R, Ban-Weiss G (2010) Importance of carbon dioxide physiological forcing to future climate change. Proc Nat Acad Sci 107:9513–9518. doi:10.1073/pnas.0913000107, http://www.pnas.org/content/early/2010/04/30/0913000107.full+html Google Scholar
  13. Chou C, Neelin JD, Chen CA, Tu JY (2009) Evaluating the “Rich-Get-Richer” mechanism in tropical precipitation change under global warming. J Clim 22(8):1982–2005. doi:10.1175/2008JCLI2471.1 CrossRefGoogle Scholar
  14. Chou C, Chiang JCH, Lan CW, Chung CH, Liao YC, Lee CJ (2013) Increase in the range between wet and dry season precipitation. Nat Geosci 6(4):263–267. doi:10.1038/ngeo1744 CrossRefGoogle Scholar
  15. Coats S, Smerdon JE, Seager R, Cook BI, González-Rouco JF (2013) Megadroughts in Southwestern North America in ECHO-G. J Clim e-View. doi: 10.1175/JCLI-D-12-00603.1
  16. Cook BI, Seager R, Miller RL, Mason JA (2013) Intensification of North American megadroughts through surface and dust aerosol forcing. J Clim 26:4414–4430. doi:10.1175/JCLI-D-12-00022.1 CrossRefGoogle Scholar
  17. Cook ER, Seager R, Heim RR Jr, Vose RS, Herweijer C, Woodhouse C (2010) Megadroughts in North America: placing IPCC projections of hydroclimatic change in a long-term palaeoclimate context. J Quat Sci 25(1):48–61. doi:10.1002/jqs.1303 CrossRefGoogle Scholar
  18. Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Climate Change 2(7):491–496. doi:10.1038/nclimate1452 Google Scholar
  19. Dai A (2011) Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J Geophys Res: Atmospheres 116(D12):D12,115. doi:10.1029/2010JD015541 CrossRefGoogle Scholar
  20. Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev: Climate Change 2(1):45–65. doi:10.1002/wcc.81 Google Scholar
  21. Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Change 3(1):52–58. doi:10.1038/nclimate1633 CrossRefGoogle Scholar
  22. Deryng D, Sacks WJ, Barford CC, Ramankutty N (2011) Simulating the effects of climate and agricultural management practices on global crop yield. doi:10.1029/2009GB003765
  23. Ding Y, Hayes MJ, Widhalm M (2011) Measuring economic impacts of drought: a review and discussion. Disaster Prev Manage 20(4):434–446. doi:10.1108/09653561111161752 CrossRefGoogle Scholar
  24. Domec JC, Palmroth S, Ward E, Maier CA, Thérézien M, Oren R (2009) Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda (loblolly pine) to long-term growth in elevated CO2 (free-air CO2 enrichment) and N-fertilization. Plant, Cell & Environ 32(11):1500–1512. doi:10.1111/j.1365-3040.2009.02014.x CrossRefGoogle Scholar
  25. Giannini A, Saravanan R, Chang P (2003) Oceanic Forcing of Sahel Rainfall on Interannual to Interdecadal Time Scales. Science 302(5647):1027–1030. doi:10.1126/science.1089357 CrossRefGoogle Scholar
  26. Guttman NB (1998) Comparing the Palmer Drought Index and the Standardized Precipitation Index. J Am Water Resour Assoc 34:113–121. doi:10.1111/j.1752-1688.1998.tb05964.x CrossRefGoogle Scholar
  27. Headey D (2011) Rethinking the global food crisis: the role of trade shocks. Food Policy 36(2):136–146. doi:10.1016/j.foodpol.2010.10.003 CrossRefGoogle Scholar
  28. Held I, Soden B (2006) Robust responses of the hydrological cycle to global warming. J Clim 19(21):5686–5699. doi:10.1175/JCLI3990.1 CrossRefGoogle Scholar
  29. Held I, Soden B (2006) Robust responses of the hydrological cycle to global warming. J Clim 19(21):5686–5699. doi:10.1175/JCLI3990.1 Google Scholar
  30. Hoerling M, Kumar A, Dole R, Nielsen-Gammon JW, Eischeid J, Perlwitz J, Quan XW, Zhang T, Pegion P, Chen M (2012) Anatomy of an extreme event. J Clim 26(9):2811–2832. doi:10.1175/JCLI-D-12-00270.1 CrossRefGoogle Scholar
  31. Hoerling M, Eischeid J, Kumar A, Leung R, Mariotti A, Mo K, Schubert S, Seager R (2013) Causes and Predictability of the 2012 Great Plains Drought. Bull Am Meteorol Soc pressGoogle Scholar
  32. Hoerling MP, Eischeid JK, Quan XW, Diaz HF, Webb RS, Dole RM, Easterling DR (2012b) Is a transition to semipermanent drought conditions imminent in the U.S. Great Plains? J Clim 25(24):8380–8386. doi:10.1175/JCLI-D-12-00449.1
  33. Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319(1–4):83–95. doi:10.1016/j.jhydrol.2005.07.003 CrossRefGoogle Scholar
  34. Hussain MZ, VanLoocke A, Siebers MH, Ruiz-Vera UM, Cody Markelz RJ, Leakey ADB, Ort DR, Bernacchi CJ (2013) Future carbon dioxide concentration decreases canopy evapotranspiration and soil water depletion by field-grown maize. Glob Change Biol 19(5):1572–1584. doi:10.1111/gcb.12155 CrossRefGoogle Scholar
  35. Inauen N, Körner C, Hiltbrunner E (2013) Hydrological consequences of declining land use and elevated CO2 in alpine grassland. J Ecol 101(1):86–96. doi:10.1111/1365-2745.12029 CrossRefGoogle Scholar
  36. Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen J, de Jeu R, Dolman AJ, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law BE, Montagnani L, Mu Q, Mueller B, Oleson K, Papale D, Richardson AD, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467(7318):951–954. doi:10.1038/natur09396 CrossRefGoogle Scholar
  37. Karl TR, Gleason BE, Menne MJ, McMahon JR, Heim RR, Brewer MJ, Kunkel KE, Arndt DS, Privette JL, Bates JJ, Groisman PY, Easterling DR (2012) U.S. temperature and drought: recent anomalies and trends. EOS, Trans Am Geophys Union 93(47):473–474. doi:10.1029/2012EO470001 Google Scholar
  38. Knutti R, Sedlacek J (2013) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Change 3(4):369–373. doi:10.1038/nclimate1716 CrossRefGoogle Scholar
  39. Li X, Waddington SR, Dixon J, Joshi AK, Vicente MC (2011) The relative importance of drought and other water-related constraints for major food crops in South Asian farming systems. Food Security 3(1):19–33, doi:10.1007/s12571-011-0111-x Google Scholar
  40. Li X, Waddington SR, Dixon J, Joshi AK, Vicente MC (2011) The relative importance of drought and other water-related constraints for major food crops in South Asian farming systems. Food Secur 3(1):19–33. doi:10.1007/s12571-011-0111-x CrossRefGoogle Scholar
  41. Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production Since 1980. Science 333(6042):616–620. doi:10.1126/science.1204531 CrossRefGoogle Scholar
  42. Lubchenco J, Karl TR (2012) Predicting and managing extreme weather events. Phys Today 65(3):31. doi:10.1063/PT.3.1475 CrossRefGoogle Scholar
  43. Lyon B, DeWitt DG (2012) A recent and abrupt decline in the East African long rains. Geophys Res Lett 39(2):L02,702. doi:10.1029/2011GL050337 Google Scholar
  44. McGrath GS, Sadler R, Fleming K, Tregoning P, Hinz C, Veneklaas EJ (2012) Tropical cyclones and the ecohydrology of Australia’s recent continental-scale drought. Geophys Res Lett 39(3), doi:10.1029/2011GL050263
  45. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. Eighth Conference on Applied Climatology pp 179–184Google Scholar
  46. Meehl GA, Zwiers F, Evans J, Knutson T, Mearns L, Whetton P (2000) Trends in Extreme Weather and Climate Events: Issues Related to Modeling Extremes in Projections of Future Climate Change*. Bulletin of the American Meteorological Society 81(3):427–436. doi:10.1175/1520-0477(2000)081<0427:TIEWAC>2.3.CO;2)CrossRefGoogle Scholar
  47. Naudts K, Berge J, Janssens I, Nijs I, Ceulemans R (2013) Combined effects of warming and elevated CO2 on the impact of drought in grassland species. Plant Soil 369(1-2):497–507. doi:10.1007/s11104-013-1595-2 CrossRefGoogle Scholar
  48. Neelin JD, Chou C, Su H (2003) Tropical drought regions in global warming and El Nino teleconnections. Geophys Res Lett 30(24). doi:10.1029/2003GL018625
  49. Palmer WC (1965) Meteorological drought. Res Paper 45:1–58Google Scholar
  50. Peng S, Tang Q, Zou Y (2009) Current status and challenges of rice production in China. Plant Prod Sci 12(1):3–8. doi:10.1626/pps.12.3 CrossRefGoogle Scholar
  51. Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc Lond Series A Math Phys Scie 193(1032):120–145CrossRefGoogle Scholar
  52. Rahmstorf S, Coumou D (2011) Increase of extreme events in a warming world. Proc Nat Acad Sci 108(44):17,905–17,909. doi:10.1073/pnas.1101766108 CrossRefGoogle Scholar
  53. Rosenzweig C, Hillel D (1993) The dust bowl of the 1930s: analog of greenhouse effect in the Great Plains. J Environ Qual 22(1):9–22CrossRefGoogle Scholar
  54. Ross TF, Lott N (2003) A climatology of 1980-2003 extreme weather and climate events. Tech. rep., NOAA/NESDIS. National Climatic Data Center, Asheville, NC.Google Scholar
  55. Scheff J, Frierson DMW (2013) Scaling potential evapotranspiration with greenhouse warming. J Clim. doi:10.1175/JCLI-D-13-00233.1
  56. van der Schrier G, Barichivich J, Briffa KR, Jones PD (2013) A scPDSI-based global data set of dry and wet spells for 1901–2009. J Geophys Res: Atmospheres. doi:10.1002/jgrd.50355
  57. Seager R, Burgman R, Kushnir Y, Clement A, Cook E, Naik N, Miller J (2008) Tropical Pacific forcing of North American Medieval Megadroughts: testing the concept with an atmosphere model forced by coral-reconstructed SSTs. J Clim 21(23):6175–6190. doi:10.1175/2008JCLI2170.1 CrossRefGoogle Scholar
  58. Seager R, Naik N, Vecchi GA (2010) Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J Clim 23(17):4651–4668. doi:10.1175/2010JCLI3655.1 CrossRefGoogle Scholar
  59. Seager R, Ting M, Li C, Naik N, Cook B, Nakamura J, Liu H (2013) Projections of declining surface-water availability for the southwestern United States. Nat Clim Change 3:482–486. doi:10.1038/nclimate1787 CrossRefGoogle Scholar
  60. Sellers PJ, Dickinson RE, Randall DA, Betts AK, Hall FG, Berry JA, Collatz GJ, Denning AS, Mooney HA, Nobre CA, Sato N, Field CB, Henderson-Sellers A (1997) Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275(5299):502–509. doi:10.1126/science.275.5299.502 CrossRefGoogle Scholar
  61. Seneviratne SI (2012) Climate science: historical drought trends revisited. Nature 491(7424):338–339. doi:10.1038/491338a CrossRefGoogle Scholar
  62. Seo KH, Ok J, Son JH, Cha DH (2013) Assessing future changes in the East Asian summer monsoon using CMIP5 coupled models. J Clim. doi:10.1175/JCLI-D-12-00694.1
  63. Sheffield J, Wood EF (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31(1):79–105. doi:10.1007/s00382-007-0340-z CrossRefGoogle Scholar
  64. Sheffield J, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491(7424):435–438. doi:10.1038/nature11575 CrossRefGoogle Scholar
  65. Stocker R, Leadley PW, Körner C (1997) Carbon and water fluxes in a calcareous grassland under elevated CO2. Funct Ecol 11(2):222–230. doi:10.1046/j.1365-2435.1997.00071.x CrossRefGoogle Scholar
  66. Taylor IH, Burke E, McColl L, Falloon PD, Harris GR, McNeall D (2013) The impact of climate mitigation on projections of future drought. Hydrol Earth Syst Sci 17(6):2339–2358. doi:10.5194/hess-17-2339-2013 CrossRefGoogle Scholar
  67. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi:10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  68. Teixeira EI, Fischer G, van Velthuizen H, Walter C, Ewert F (2013) Global hot-spots of heat stress on agricultural crops due to climate change. Agric Meteorol 170(0):206–215. doi:10.1016/j.agrformet.2011.09.002 CrossRefGoogle Scholar
  69. Thornthwaite C (1948) An approach toward a rational classification of climate. Geograph Rev 38(1):55–94CrossRefGoogle Scholar
  70. Vicente-Serrano SM, Beguería S, López-Moreno JI (2009) A Multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23(7):1696–1718. doi:10.1175/2009JCLI2909.1 CrossRefGoogle Scholar
  71. Vicente-Serrano SM, Beguería S, López-Moreno JI, Angulo M, El Kenawy A (2010) A new global 0.5 gridded dataset (1901–2006) of a multiscalar drought index: comparison with current drought index datasets based on the Palmer Drought Severity Index. J Hydrometeorol 11(4):1033–1043. doi:10.1175/2010JHM1224.1 CrossRefGoogle Scholar
  72. Wada Y, Wisser D, Eisner S, Flörke M, Gerten D, Haddeland I, Hanasaki N, Masaki Y, Portmann FT, Stacke T, Tessler Z, Schewe J (2013) Multi-model projections and uncertainties of irrigation water demand under climate change. Geophys Res Lett. doi:10.1002/grl.50686
  73. Wiltshire A, Gornall J, Booth B, Dennis E, Falloon P, Kay G, McNeall D, McSweeney C, Betts R (2013) The importance of population, climate change and {CO2} plant physiological forcing in determining future global water stress. Glob Environ Change 23(5):1083–1097. doi:10.1016/j.gloenvcha.2013.06.005 CrossRefGoogle Scholar
  74. Xu CY, Singh VP (2002) Cross comparison of empirical equations for calculating potential evapotranspiration with data from Switzerland. Water Resour Manage 16(3):197–219. doi:10.1023/A:1020282515975 CrossRefGoogle Scholar
  75. Zhang T, Simelton E, Huang Y, Shi Y (2013) A Bayesian assessment of the current irrigation water supplies capacity under projected droughts for the 2030s in China. Agricultural and Forest Meteorology 178–179(0):56–65. doi:10.1016/j.agrformet.2012.06.002 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2014

Authors and Affiliations

  • Benjamin I. Cook
    • 1
  • Jason E. Smerdon
    • 2
  • Richard Seager
    • 2
  • Sloan Coats
    • 2
  1. 1.NASA Goddard Institute for Space StudiesNew YorkUSA
  2. 2.Lamont-Doherty Earth ObservatoryPalisadesUSA

Personalised recommendations