Skip to main content

Characterizing atmospheric circulation signals in Greenland ice cores: insights from a weather regime approach

Abstract

Greenland ice cores offer seasonal to annual records of δ18O, a proxy for precipitation-weighted temperature, over the last few centuries to millennia. Here, we investigate the regional footprints of the North Atlantic weather regimes on Greenland isotope and climate variability, using a compilation of 22 different shallow ice-cores and the atmospheric pressure conditions from the twentieth century reanalysis (20CR). As a first step we have verified that the leading modes of winter and annual δ18O are well correlated with oceanic (Atlantic multidecadal oscillation) and atmospheric [North Atlantic oscillation (NAO)] indices respectively, and also marginally with external forcings, thus confirming earlier studies. The link between weather regimes and Greenland precipitation, precipitation-weighted temperature and δ18O is further explored by using an isotope simulation from the LMDZ-iso model, where the 3-dimensional wind fields are nudged to those of 20CR. In winter, the NAO+ and NAO− regimes in LMDZ-iso produce the largest isotopic changes over the entire Greenland region, with maximum anomalies in the South. Likewise, the Scandinavian blocking and the Atlantic ridge also show remarkable imprints on isotopic composition over the region. To assess the robustness and model dependency of our findings, a second isotope simulation from the isotopic model is also explored. The percentage of Greenland δ18O variance explained by the ensemble of weather regimes is increased by a factor near two in both LMDZ-iso and IsoGSM when compared to the contribution of the NAO index only. Similarly, weather regimes provide a net gain in the δ18O variance explained of similar magnitude for the whole set of ice core records. Greenland δ18O also appears to be locally affected by the low-frequency variations in the centres of action of the weather regimes, with clearer imprints in the LMDZ-iso simulation. This study opens the possibility for reconstructing past changes in the frequencies of occurrence of the weather regimes, which would rely on the sensitive regions identified here, and the use of additional proxies over the North Atlantic region.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Allan R, Ansell T (2006) A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J Clim 19:5816–5842

    Article  Google Scholar 

  • Andersen KK, Ditlevsen PD, Rasmussen SO, Clausen HB, Vinther BM, Johnsen SJ, Steffensen JP (2006) Retrieving a common accumulation record from Greenland ice cores for the past 1800 years. J Geophys Res 111. doi:10.1029/2005JD006765

  • Appenzeller C, Stocker T, Anklin M (1998) North Atlantic oscillation dynamics recorded in Greenland ice cores. Science 282:446

    Article  Google Scholar 

  • Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 294:581–584. doi:10.1126/science.1063315

    Article  Google Scholar 

  • Barlow LK, White JWC, Barry RG, Rogers JC, Grootes PM (1993) The North Atlantic oscillation signature in deuterium and deuterium excess signals in the Greenland ice sheet project 2 ice core, 1840–1970. Geophys Res Lett 20:2901–2904

    Article  Google Scholar 

  • Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126

    Article  Google Scholar 

  • Box JE, Yang L, Bromwich DH, Bai L-S (2009) Greenland ice sheet surface air temperature variability: 1840–2007. J Clim 22:4029–4049. doi:10.1175/2009JCLI2816.1

    Article  Google Scholar 

  • Bretherton C, Widmann M, Dymnikov V, Wallace J, Bladé I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12:1990–2009

    Article  Google Scholar 

  • Brönnimann S, Grant A, Compo G, Ewen T, Griesser T, Fischer AM, Schraner M, Stickler A (2012a) A multi-data set comparison of the vertical structure of temperature variability and change over the Arctic during the past 100 years. Clim Dyn 39:1577–1598. doi:10.1007/s00382-012-1291-6

    Article  Google Scholar 

  • Brönnimann S, Martius O, Von Waldow H, Welker C, Luterbacher J, Compo GP, Sardeshmukh PD, Usbeck T (2012b) Extreme winds at northern mid-latitudes since 1871. Meteorol Z 21:13–27. doi:10.1127/0941-2948/2012/0337

    Article  Google Scholar 

  • Casado M, Ortega P, Masson-Delmotte V, Risi C, Swingedouw D, Daux V, Genty D, Maignan F, Solomina O, Vinther B, Viovy N, Yiou P (2013) Impact of precipitation intermittency on NAO-temperature signals in proxy records. Clim Past 9:871–886. doi:10.5194/cp-9-871-2013

    Article  Google Scholar 

  • Cassou C (2008) Intraseasonal interaction between the Madden–Julian oscillation and the North Atlantic oscillation. Nature 455:523–527. doi:10.1038/nature07286

    Article  Google Scholar 

  • Cassou C, Terray L, Hurrell JW, Deser C (2004) North Atlantic winter climate regimes: spatial asymmetry, stationarity with time, and oceanic forcing. J Clim 17:1055–1068

    Article  Google Scholar 

  • Cassou C, Terray L, Phillips A (2005) Tropical Atlantic influence on European heat waves. J Clim 18:2805–2811

    Article  Google Scholar 

  • Cassou C, Deser C, Alexander MA (2007) Investigating the impact of reemerging sea surface temperature anomalies on the winter atmospheric circulation over the North Atlantic. J Clim 20:3510–3526. doi:10.1175/JCLI4202.1

    Article  Google Scholar 

  • Cassou C, Minvielle M, Terray L, Périgaud C (2011) A statistical–dynamical scheme for reconstructing ocean forcing in the Atlantic. Part I: weather regimes as predictors for ocean surface variables. Clim Dyn 36:19–39. doi:10.1007/s00382-010-0781-7

    Article  Google Scholar 

  • Cattiaux J, Vautard R, Cassou C, Yiou P, Masson-Delmotte V, Codron F (2010) Winter 2010 in Europe: a cold extreme in a warming climate. Geophys Res Lett 37. doi:10.1029/2010gl044613

  • Cattiaux J, Douville H, Ribes A, Chauvin F, Plante C (2012) Towards a better understanding of changes in wintertime cold extremes over Europe: a pilot study with CNRM and IPSL atmospheric models. Clim Dyn 1–13. doi:10.1007/s00382-012-1436-7

  • Chylek P, Folland CK, Dijkstra HA, Lesins G, Dubey MK (2011) Ice core data evidence for a prominent near 20 year time scale of the Atlantic multidecadal oscillation. Geophys Res Lett 38:L13704. doi:10.1029/2011GL047501

    Google Scholar 

  • Chylek P, Folland CK, Frankcombe L, Dijkstra HA, Lesins G, Dubey MK (2012) Greenland ice core evidence for spatial and temporal variability of the Atlantic multidecadal oscillation. Geophys Res Lett 39:L09705. doi:10.1029/2012GL051241

  • Clausen H, Gundestrup N, Johnsen S, Bindschadler R, Zwally J (1988) Glaciological investigations in the Crete area, central Greenland: a search for a new deep-drilling site. Ann Glaciol 10:10–15

    Google Scholar 

  • Compo G, Whitaker J, Sardeshmukh P, Matsui N, Allan R, Yin X, Gleason B, Vose R, Rutledge G, Bessemoulin P (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28

    Article  Google Scholar 

  • Corti S, Molteni F, Palmer T (1999) Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature 398:799–802

    Article  Google Scholar 

  • Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277

    Article  Google Scholar 

  • Dansgaard W (1953) The abundance of 18O in atmospheric water and water vapour. Tellus 5:461–469

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Article  Google Scholar 

  • Dansgaard W, Johnsen SJ, Reeh N, Gundestrup N, Clausen HB, Hammer CU (1975) Climate changes, Norsemen and modern man. Nature 255:24–28

    Article  Google Scholar 

  • Davini P, Cagnazzo C, Neale R, Tribbia J (2012) Coupling between Greenland blocking and the North Atlantic oscillation pattern. Geophys Res Lett 39:L14701. doi:10.1029/2012GL052315

    Google Scholar 

  • Dawson A, Palmer TN, Corti S (2012) Simulating regime structures in weather and climate prediction models. Geophys Res Lett 39:L21805. doi:10.1029/2012GL053284

    Google Scholar 

  • de Viron O, Dickey JO, Ghil M (2013) Global modes of climate variability. Geophys Res Lett. doi:10.1002/grl.50386

    Google Scholar 

  • Enfield DB, Mestas-Nunez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U. S. Geophys Res Lett 28:2077–2080

    Article  Google Scholar 

  • Ferguson CR, Villarini G (2012) Detecting inhomogeneities in the twentieth century reanalysis over the central United States. J Geophys Res 117:D05123. doi:10.1029/2011JD016988

    Google Scholar 

  • Fettweis X, Hanna E, Lang C, Belleflamme A, Erpicum M, Gallée H (2013) Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet. Cryosphere 7:241–248. doi:10.5194/tc-7-241-2013

    Article  Google Scholar 

  • Fisher DA (1985) Stratigraphic noise in time series derives from ice cores. Ann Glaciol 7:76–83

    Google Scholar 

  • Gao C, Robock A, Ammann C (2008) Volcanic forcing of climate over the past 1500 years: an improved ice core-based index for climate models. J Geophys Res 113:D23111

    Article  Google Scholar 

  • Gastineau G, Frankignoul C (2012) Cold-season atmospheric response to the natural variability of the Atlantic meridional overturning circulation. Clim Dyn 39:37–57. doi:10.1007/s00382-011-1109-y

    Article  Google Scholar 

  • Gates W (1992) AMIP: the atmospheric model intercomparison project. Bull Am Meteorol Soc 73:1962–1970

    Article  Google Scholar 

  • Grootes P, Stuiver M (1997) Oxygen 18/16 variability in Greenland snow and ice with 10−3 to 105 year time resolution. J Geophys Res 102(26455–26426):26470

    Google Scholar 

  • Guemas V, Salas-Mélia D, Kageyama M, Giordani H, Voldoire A, Sanchez-Gomez E (2010) Summer interactions between weather regimes and surface ocean in the North-Atlantic region. Clim Dyn 34:527–546. doi:10.1007/s00382-008-0491-6

    Article  Google Scholar 

  • Hakkinen S, Rhines PB, Worthen DL (2011) Atmospheric blocking and Atlantic multidecadal ocean variability. Science 334:655–659. doi:10.1126/science.1205683

    Article  Google Scholar 

  • Hanna E, McConnell J, Das S, Cappelen J, Stephens A (2006) Observed and modeled Greenland ice sheet snow accumulation, 1958–2003, and links with regional climate forcing. J Clim 19:344–358

    Article  Google Scholar 

  • Hanna E, Huybrechts P, Cappelen J, Steffen K, Bales RC, Burgess E, Mcconnell JR, Peder Steffensen J, Van Den Broeke M, Wake L, Bigg G, Griffiths M, Savas D (2011) Greenland ice sheet surface mass balance 1870 to 2010 based on twentieth century reanalysis, and links with global climate forcing. J Geophys Res 116:D24121. doi:10.1029/2011JD016387

    Google Scholar 

  • Hanna E, Jones J, Cappelen J, Mernild S, Wood L, Steffen K, Huybrechts P (2013) The influence of North Atlantic atmospheric and oceanic forcing effects on 1900–2010 Greenland summer climate and ice melt/runoff. Int J Climatol 33:862–880. doi:10.1002/joc.3475

    Article  Google Scholar 

  • Hartigan JA, Wong MA (1979) A K-means clustering algorithm. Appl Stat 28:100–108

    Article  Google Scholar 

  • Hourdin F, Foujols M-A, Codron F, Guemas V, Dufresne J-L, Bony S, Denvil S, Guez L, Lott F, Ghattas J, Braconnot P, Marti O, Meurdesoif Y, Bopp L (2013) Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Clim Dyn 40:2167–2192. doi:10.1007/s00382-012-1411-3

    Article  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  • Ineson S, Scaife A, Knight JR, Manners J, Dunstone NJ, Gray L, Haigh J (2011) Solar forcing of winter climate variability in the Northern Hemisphere. Nat Geosci 4:753–757. doi:10.1038/ngeo1282

    Article  Google Scholar 

  • Jouzel J, Alley RB, Cuffey KM, Dansgaard W, Grootes P, Hoffmann G, Johnsen SJ, Koster RD, Peel D, Shuman CA, Stievenard M, Stuiver M, White J (1997) Validity of the temperature reconstruction from water isotopes in ice cores. J Geophys Res 102:26471–26487

    Article  Google Scholar 

  • Kaufman DS, Schneider DP, Mckay NP, Ammann CM, Bradley RS, Briffa KR, Miller GH, Otto-Bliesner BL, Overpeck JT, Vinther BM, Abbott M, Axford Y, Bird B, Birks HJB, Bjune AE, Briner J, Cook T, Chipman M, Francus P, Gajewski K, Geirsdottir A, Hu FS, Kutchko B, Lamoureux S, Loso M, Macdonald G, Peros M, Porinchu D, Schiff C, Seppa H, Thomas E (2009) Recent warming reverses long-term Arctic cooling. Science 325:1236–1239. doi:10.1126/science.1173983

    Article  Google Scholar 

  • Kinnard C, Zdanowicz CM, Fisher DA, Isaksson E, de Vernal A, Thompson LG (2011) Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature 479:509–512. doi:10.1038/nature10581

    Article  Google Scholar 

  • Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:4. doi:10.1029/2005GL024233

    Google Scholar 

  • Kobashi T, Shindell DT, Kodera K, Box JE, Nakaegawa T, Kawamura K (2013) On the origin of multidecadal to centennial Greenland temperature anomalies over the past 800 yr. Clim Past 9:583–596. doi:10.5194/cp-9-583-2013

    Article  Google Scholar 

  • Krinner G, Werner M (2003) Impact of precipitation seasonality changes on isotopic signals in polar ice cores: a multi-model analysis. Earth Planet Sci Lett 216:525–538

    Article  Google Scholar 

  • Krinner G, Genthon C, Jouzel J (1997) GCM analysis of local influences on ice core δ signals. Geophys Res Lett 24:2825–2828

    Article  Google Scholar 

  • Krivova NA, Balmaceda L, Solanki SK (2007) Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. Astron Astrophys 467:335–346. doi:10.1051/0004-6361:20066725

    Google Scholar 

  • Latif M, Roeckner E, Botzet M, Esch M, Haak H (2004) Reconstructing, monitoring, and predicting multidecadal-scale changes in the north Atlantic thermohaline circulation witch sea surface temperature. J Clim 17:1605–1613

    Article  Google Scholar 

  • Lehner F, Raible CC, Stocker TF (2012) Testing the robustness of a precipitation proxy-based North Atlantic oscillation reconstruction. Quat Sci Rev 45:85–94. doi:10.1016/j.quascirev.2012.04.025

    Article  Google Scholar 

  • Masson-Delmotte V, Kageyama M, Braconnot P, Charbit S, Krinner G, Ritz C, Guilyardi E, Jouzel J, Abe-Ouchi A, Crucifix M, Gladstone R, Hewitt C, Kitoh A, LeGrande A, Marti O, Merkel U, Motoi T, Ohgaito R, Otto-Bliesner B, Peltier W, Ross I, Valdes P, Vettoretti G, Weber S, Wolk F, Yu Y (2006) Past and future polar amplification of climate change: climate model intercomparisons and ice-core constraints. Clim Dyn 26:513–529. doi:10.1007/s00382-005-0081-9

    Article  Google Scholar 

  • Masson-Delmotte V, Braconnot P, Hoffmann G, Jouzel J, Kageyama M, Landais A, Lejeune Q, Risi C, Sime L, Sjolte J, Swingedouw D, Vinther B (2011) Sensitivity of interglacial Greenland temperature and delta O-18: ice core data, orbital and increased CO2 climate simulations. Clim Past 7:1041–1059. doi:10.5194/Cp-7-1041-2011

    Article  Google Scholar 

  • Michelangeli PA, Vautard R, Legras B (1995) Weather regimes: recurrence and quasi stationnarity. J Atmos Sci 52:1237–1256

    Article  Google Scholar 

  • Mo K, Ghil M (1988) Cluster analysis of multiple planetary flow regimes. J Geophys Res Atmos 93:10927–10952. doi:10.1029/JD093iD09p10927

    Article  Google Scholar 

  • NEEM Community Members (2013) Eemian interglacial reconstructed from a Greenland folded ice core. Nature 493:489–494. doi:10.1038/nature11789

    Article  Google Scholar 

  • Ottera OH, Bentsen M, Drange H, Suo L (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci 3:688–694. doi:10.1038/NGEO955

    Article  Google Scholar 

  • Persson A, Langen PL, Ditlevsen P, Vinther BM (2011) The influence of precipitation weighting on interannual variability of stable water isotopes in Greenland. J Geophys Res 116:D20120. doi:10.1029/2010JD015517

    Article  Google Scholar 

  • Rayner N, Parker D, Horton E, Folland CK, Alexander L, Rowell D, Kent E, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Reinhold B, Pierrehumbert R (1982) Dynamics of weather regimes—quasi-stationary waves and blocking. Mon Weather Rev 110:1105–1145

    Article  Google Scholar 

  • Rimbu N, Lohmann G (2010) Decadal variability in a central Greenland high-resolution deuterium isotope record and its relationship to the frequency of daily atmospheric circulation patterns from the North Atlantic region. J Climate 23:4608–4618. doi:10.1175/2010JCLI3556.1

    Article  Google Scholar 

  • Rimbu N, Lohmann G (2011) Winter and summer blocking variability in the North Atlantic region—evidence from long-term observational and proxy data from southwestern Greenland. Clim Past 7:543–555. doi:10.5194/cp-7-543-2011

    Article  Google Scholar 

  • Risi C, Bony S, Vimeux F, Jouzel J (2010) Water-stable isotopes in the LMDZ4 general circulation model: model evaluation for present-day and past climates and applications to climatic interpretations of tropical isotopic records. J Geophys Res 115:D12118. doi:10.1029/2009JD013255

    Article  Google Scholar 

  • Risi C, Noone D, Worden J, Frankenberg C, Stiller G, Kiefer M, Funke B, Walker K, Bernath P, Schneider M, Wunch D, Sherlock V, Deutscher N, Griffith D, Wennberg PO, Strong K, Smale D, Mahieu E, Barthlott S, Hase F, García O, Notholt J, Warneke T, Toon G, Sayres D, Bony S, Lee J, Brown D, Uemura R, Sturm C (2012) Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations. J Geophys Res 117:D05303. doi:10.1029/2011JD016621

    Google Scholar 

  • Schwager M (2000) Eisbohrkernuntersuchungen zur räumlichen und zeitlichen Variabilität von Temperatur und Niederschlagsrate im Spätholozän in Nordgrönland = Ice core analysis on the spatial and temporal variability of temperature and precipitation during the late Holocene in North Greenland, Berichte zur Polarforschung (Reports on Polar Research), Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 362, 136 p

  • Shindell DT, Schmidt GA, Mann ME, Rind D, Waple A (2001) Solar forcing of regional climate change during the Maunder Minimum. Science 294:2149–2152

    Article  Google Scholar 

  • Shindell D, Schmidt G, Miller R, Miller RL, Mann ME (2003) Volcanic and solar forcing of climate change during the preindustrial era. J Clim 16:4094–4107

    Article  Google Scholar 

  • Sodemann H, Masson-Delmotte V, Schwierz C, Vinther BM, Wernli H (2008a) Interannual variability of Greenland winter precipitation sources: 2. Effects of North Atlantic oscillation variability on stable isotopes in precipitation. J Geophys Res 113:D12111. doi:10.1029/2007JD009416

    Article  Google Scholar 

  • Sodemann H, Schwierz C, Wernli H (2008b) Interannual variability of Greenland winter precipitation sources: lagrangian moisture diagnostic and North Atlantic oscillation influence. J Geophys Res 113:D03107. doi:10.1029/2007JD008503

    Google Scholar 

  • Steen-Larsen HC, Johnsen SJ, Masson-Delmotte V, Stenni B, Risi C, Sodemann H, Balslev-Clausen D, Blunier T, Dahl-Jensen D, Ellehøj MD, Falourd S, Grindsted A, Gkinis V, Jouzel J, Popp T, Sheldon S, Simonsen SB, Sjolte J, Steffensen JP, Sperlich P, Sveinbjörnsdóttir AE, Vinther BM, White JWC (2013a) Continuous monitoring of summer surface water vapor isotopic composition above the Greenland ice sheet. Atmos Chem Phys 13:4815–4828. doi:10.5194/acp-13-4815-2013

    Article  Google Scholar 

  • Steen-Larsen HC, Masson-Delmotte V, Hirabayashi M, Winkler R, Satow K, Prie F, Bayou N, Brun E, Cuffey KM, Dahl-Jensen D, Dumont M, Guillevic M, Kipfstuhl J, Landais A, Popp T, Risi C, Steffen K, Stenni B, Sveinbjornsdóttir A (2013b) What controls the isotopic composition of Greenland surface snow? Clim Past Discuss 9:6035–6076. doi:10.5194/cpd-9-6035-2013

    Article  Google Scholar 

  • Stuiver M, Grootes PM, Brazunias TF (1995) The GISP2 d18O climate record of the past 16,500 years and the role of the sun, ocean and volcano. Quat Res 44:341–354

    Article  Google Scholar 

  • Swingedouw D, Terray L, Cassou C, Voldoire A, Salas-Mélia D, Servonnat J (2011) Natural forcing of climate during the last millennium: fingerprint of solar variability. Clim Dyn 36:1349–1364. doi:10.1007/s00382-010-0803-5

    Article  Google Scholar 

  • Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geophys Res Lett 33:L12704. doi:10.1029/2006GL026894

    Article  Google Scholar 

  • Van Leer B (1977) Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J Comput Phys 23:276–299. doi:10.1016/0021-9991(77)90095-X

    Article  Google Scholar 

  • Vautard R (1990) Multiple weather regimes over the North Atlantic analysis of precursors and successors. Mon Weather Rev 118:2056–2081

    Article  Google Scholar 

  • Vinther BM, Andersen KK, Hansen AW, Schmith T, Jones PD (2003a) Improving the Gibraltar/Reykjavik NAO Index. Geophys Res Lett 30:2222

    Article  Google Scholar 

  • Vinther BM, Johnsen SJ, Andersen KK, Clausen HB, Hansen AW (2003b) NAO signal recorded in the stable isotopes of Greenland ice cores. Geophys Res Lett 30:1387

    Article  Google Scholar 

  • Vinther BM, Andersen KK, Jones PD, Briffa KR, Cappelen J (2006a) Extending Greenland temperature records into the late eighteenth century. J Geophys Res 111:D11105. doi:10.1029/2005JD006810

    Article  Google Scholar 

  • Vinther BM, Clausen HB, Johnsen SJ, Rasmussen SO, Andersen KK, Buchardt SL, Dahl-Jensen D, Seierstad IK, Siggaard-Andersen ML, Steffensen JP, Svensson A, Olsen J, Heinemeier J (2006b) A synchronized dating of three Greenland ice cores throughout the Holocene. J Geophys Res Atmos 111:D13102. doi:10.1029/2005jd006921

    Article  Google Scholar 

  • Vinther BM, Buchardt SL, Clausen HB, Dahl-Jensen D, Johnsen SJ, Fisher DA, Koerner RM, Raynaud D, Lipenkov V, Andersen KK, Blunier T, Rasmussen SO, Steffensen JP, Svensson AM (2010a) Holocene thinning of the Greenland ice sheet. Nature 461:385–388. doi:10.1038/nature08355

    Article  Google Scholar 

  • Vinther BM, Jones PD, Briffa KR, Clausen HB, Andersen KK, Dahl-Jensen D, Johnsen SJ (2010b) Climatic signals in multiple highly resolved stable isotope records from Greenland. Quat Sci Rev 29:522–538. doi:10.1016/j.quascirev.2009.11.002

    Article  Google Scholar 

  • Wang Y-H, Magnusdottir G, Stern H, Tian X, Yu Y (2012) Decadal variability of the NAO: introducing an augmented NAO index. Geophys Res Lett 39:L21702. doi:10.1029/2012GL053413

    Google Scholar 

  • Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern-Hemisphere winter. Mon Wea Rev 109:784–812

    Google Scholar 

  • Woollings T, Hannachi A, Hoskins B (2010) Variability of the North Atlantic eddy-driven jet stream. Q J R Meteorol Soc 136:856–868

    Article  Google Scholar 

  • Yiou P, Nogaj M (2004) Climatic extremes and weather regimes: where and when? Geophys Res Lett 31. doi:10.1029/2003GL019119

  • Yiou P, Vautard R, Naveau P, Cassou C (2007) Inconsistency between atmospheric dynamics and temperatures during the exceptional 2006/2007 fall/winter and recent warming in Europe. Geophys Res Lett 34:L21808. doi:10.1029/2007GL031981

    Article  Google Scholar 

  • Yiou P, Goubanova K, Li Z, Nogaj M (2008) Weather regime dependence of extreme value statistics for summer temperature and precipitation. Nonlinear Process Geophys 15:365–378

    Article  Google Scholar 

  • Yiou P, Servonnat J, Yoshimori M, Swingedouw D, Khodri M, Abe-Ouchi A (2012) Stability of weather regimes during the last millennium from climate simulations. Geophys Res Lett 39:L08703. doi:10.1029/2012GL051310

    Google Scholar 

  • Yoshimura K, Kanamitsu M (2008) Dynamical global downscaling of global reanalysis. Mon Weather Rev 136:2983–2998. doi:10.1175/2008mwr2281.1

    Article  Google Scholar 

  • Yoshimura K, Kanamitsu M (2013) Incremental correction for the dynamical downscaling of ensemble mean atmospheric fields. Mon Weather Rev. doi:10.1175/mwr-d-12-00271.1

    Google Scholar 

  • Yoshimura K, Kanamitsu M, Noone D, Oki T (2008) Historical isotope simulation using reanalysis atmospheric data. J Geophys Res 113:D19108. doi:10.1029/2008JD010074

    Article  Google Scholar 

Download references

Acknowledgments

This research was possible thanks to the funding by the ANR CEPS Green Greenland project. LMDZ-iso simulations were performed on the NEC supercomputer of the IDRIS computing centre. We would also like to thank two anonymous reviewers for their constructive comments that helped to improve the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Ortega.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1816 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ortega, P., Swingedouw, D., Masson-Delmotte, V. et al. Characterizing atmospheric circulation signals in Greenland ice cores: insights from a weather regime approach. Clim Dyn 43, 2585–2605 (2014). https://doi.org/10.1007/s00382-014-2074-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2074-z

Keywords

  • North Atlantic weather regimes
  • Modes of climate variability
  • Greenland climate variability
  • Isotope reanalyses
  • Ice cores
  • Water stable isotopes