Impact of climate sensitivity and polar amplification on projections of Greenland Ice Sheet loss

Abstract

The future rate of Greenland Ice Sheet (GrIS) deglaciation and the future contribution of GrIS deglaciation to sea level rise will depend critically on the magnitude of northern hemispheric polar amplification and global equilibrium climate sensitivity. Here, these relationships are analyzed using an ensemble of multi-century coupled ice-sheet/climate model simulations seeded with observationally-constrained initial conditions and then integrated forward under tripled preindustrial CO2. Polar amplifications and climate sensitivities were varied between ensemble members in order to bracket current uncertainty in polar amplification and climate sensitivity. A large inter-ensemble spread in mean GrIS air temperature, albedo and surface mass balance trends stemming from this uncertainty resulted in GrIS ice volume loss ranging from 5 to 40 % of the original ice volume after 500 years. The large dependence of GrIS deglaciation on polar amplification and climate sensitivity that we find indicates that the representation of these processes in climate models will exert a strong control on any simulated predictions of multi-century GrIS evolution. Efforts to reduce polar amplification and equilibrium climate sensitivity uncertainty will therefore play a critical role in constraining projections of GrIS deglaciation and sea level rise in a future high-CO2 world.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Applegate P.J., Kirchner N., Stone E.J., Keller K., Greve R. (2012) An assessment of key model parametric uncertainties in projections of Greenland Ice Sheet behavior. Cryosphere 6:589–606. doi:10.5194/tc-6-589-2012

    Article  Google Scholar 

  2. Bamber JL, Layberry RL, Gogineni S (2001) A new ice thickness and bed data set for the Greenland ice sheet 1: measurement, data reduction, and errors. J Geophys Res 106:33773–33780

    Article  Google Scholar 

  3. Brady E, Otto-Bliesner B, Kay J, Rosenbloom N (2013) Sensitivity to glacial forcing in the CCSM4. J Clim 26:1901–1925. doi:10.1175/JCLI-D-11-00416.1

    Article  Google Scholar 

  4. Charbit S, Paillard D, Ramstein G (2008) Amount of CO2 emissions irreversibly leading to the total melting of Greenland. Geophys Res Lett 35:L12503. doi:10.1029/2008GL033472

    Article  Google Scholar 

  5. Cuffey K, Paterson W (2010) The physics of glaciers. Elsevier, Amsterdam

    Google Scholar 

  6. DeConto R, Pollard D, Harwood D (2007) Sea ice feedback and Cenozoic evolution of Antarctic climate and ice sheets. Paleoceanography 22:PA3214. doi:10.1029/2006PA001350

    Article  Google Scholar 

  7. Eby M, Zickfeld M, Montenegro A, Archer D, Meissner K, Weaver A (2009) Lifetime of anthropogenic climate change: millennial timescales of potential CO2 and surface temperature perturbations. J Clim 22:2501–2511. doi:10.1175/2008JCLI2554.1

    Article  Google Scholar 

  8. Ettema J, van den Broeke M, van Meijgaard E, van de Berg WJ, Bamber J, Box J, Bales R (2009) Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling. Geophys Res Lett 36:L12501. doi:10.1029/2009GL038110

    Article  Google Scholar 

  9. Flanner M, Zender C, Randerson J, Rasch P (2007) Present-day climate forcing and response from black carbon in snow. J Geophys Res 112:D11202. doi:10.1029/2006JD008003

    Article  Google Scholar 

  10. Fyke J, Eby M (2012) Comment on climate sensitivity estimated from temperature reconstructions of the last glacial maximum. Science 337:1294. doi:10.1126/science.1221371

    Article  Google Scholar 

  11. Fyke J, Weaver A, Pollard D, Eby M, Carter L, Mackintosh A (2011) A new coupled ice sheet-climate model: description and sensitivity to model physics under Eemian, Last Glacial Maximum, late Holocene and modern climate conditions. Geosci Model Dev 4:117–136. doi:10.5194/gmd-4-117-2011

    Article  Google Scholar 

  12. Fyke J, Sacks W, Lipscomb W (2013) A technique for generating consistent ice sheet initial conditions for coupled ice-sheet/climate models. Geosci Model Dev Discuss 6:2491–2516. doi:10.5194/gmdd-6-2491-2013

    Article  Google Scholar 

  13. Hanna E, Navarro F, Pattyn F, Domingues C, Fettweis X, Ivins E, Nicholls R, Ritz C, Smith B, Tulaczyk S, Whitehouse P, Zwally H (2013) Ice-sheet mass balance and climate change. Nature 498:51–59. doi:10.1038/nature12238

    Article  Google Scholar 

  14. Holland M, Bitz C (2003) Polar amplification of climate change in coupled models. Clim Dyn 21:221–232

    Article  Google Scholar 

  15. Lipscomb W, Fyke J, Vizcaíno M, Sacks W, Wolfe J, Vertenstein M, Craig T, Kluzek E, Lawrence D (2013) Implementation and initial evaluation of the Glimmer Community Ice Sheet Model in the Community Earth System Model. J Clim. doi:10.1175/JCLI-D-12-005.1

  16. Loeppky J, Sacks J, Welch W (2009) Choosing the sample size of a computer experiment: a practical guide. Technometrics 51:366–376. doi:10.1198/TECH.2009.08040

    Article  Google Scholar 

  17. Manabe S, Wetherald R (1975) The effects of doubling the CO2 concentration on the climate of a general circulation model. J Atmos Sci 32:3–15. doi:10.1175/1520-0469(1975)032<0003:TEODTC>2.0.CO;2

    Article  Google Scholar 

  18. Meehl G, Stocker T, Collins W, Friedlingstein P, Gaye A, Gregory J, Kitoh A, Knutti R, Murphy J, Noda A, Raper S, Watterson I, Weaver A, Zhao ZC (2007) Global climate projections. In: Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, pp 747–845

  19. PALEOSENS Project Members (2012) Making sense of palaeoclimate sensitivity. Nature 491:683–691. doi:10.1038/nature11574

    Article  Google Scholar 

  20. Pollard D (2000) Comparisons of ice-sheet surface mass budgets from Paleoclimate Modeling Intercomparison Project (PMIP) simulations. Glob Plan Change 24(2):79–106. doi:10.1016/S0921-8181(99)00071-5

    Article  Google Scholar 

  21. Pollard D, DeConto R (2009) Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458:329–332. doi:10.1038/nature07809

    Article  Google Scholar 

  22. Pollard D, DeConto R (2012a) Description of a hybrid ice sheet-shelf model, and application to Antarctica. Geosci Model Dev 5:1273–1295. doi:10.5194/gmd-5-1273-2012

    Article  Google Scholar 

  23. Pollard D, DeConto R (2012b) A simple inverse method for the distribution of basal sliding coefficients under ice sheets, applied to antarctica. Cryosphere 6(5):953–971. doi:10.5194/tc-6-953-2012. http://www.the-cryosphere.net/6/953/2012/

    Google Scholar 

  24. Quiquet A, Punge HJ, Ritz C, Fettweis X, Gallée H, Kageyama M, Krinner G, Salas y Mélia D, Sjolte J (2012) Sensitivity of a greenland ice sheet model to atmospheric forcing fields. Cryosphere 6:999–1018. doi:10.5194/tc-6-999-2012

    Article  Google Scholar 

  25. Ridley J, Huybrechts P, Gregory J, Lowe J (2005) Elimination of the Greenland Ice Sheet in a high CO2 climate. J Clim 18:3409–3427. doi:10.1175/JCLI3482.1

    Article  Google Scholar 

  26. Rignot E, Bamber J, van den Broeke M, Davis C, Li Y, van de Berg W, van Meijgaard E (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat Geosci 1:106–110. doi:10.1038/ngeo102

    Article  Google Scholar 

  27. Robinson A, Calov R, Ganopolski A (2011) Greenland ice sheet model parameters constrained using simulations of the Eemian Interglacial. Clim Past 7:381–396. doi:10.5194/cp-7-381-2011

    Article  Google Scholar 

  28. Rogner H (1997) An assessment of world hydrocarbon resources. Annu Rev Energy Environ 22:217–262

    Article  Google Scholar 

  29. Rogozhina I, Martinec Z, Hagedoorn J, Thomas M, Fleming K (2011) On the long term memory of the Greenland Ice Sheet. J Geophys Res 116:F01011. doi:10.1029/2010JF001787

    Google Scholar 

  30. Schmittner A, Urban N, Shakun J, Mahowald N, Clark P, Bartlein P, Mix A, Rosell-Melé A (2011) Climate sensitivity estimated from temperature reconstructions of the Last Glacial Maximum. Science 334:1385–1388. doi:10.1126/science.1203513

    Article  Google Scholar 

  31. Schoof C (2010) Ice-sheet acceleration driven by melt supply variability. Nature 468:803–806. doi:10.1038/nature09618

    Article  Google Scholar 

  32. Serreze M, Barry R (2011) Processes and impacts of Arctic amplification: a research synthesis. Glob Planet Change 77:85–96. doi:10.1016/j.gloplacha.2011.03.004

    Article  Google Scholar 

  33. Stone EJ, Lunt DJ, Annan JD, Hargreaves JC (2013) Quantification of the greenland ice sheet contribution to last interglacial sea level rise. Clim Past 9:621–639. doi:10.5194/cp-9-621-2013

    Article  Google Scholar 

  34. Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Phil Trans Royal Soc A 365:2053–2075. doi:10.1098/rsta.2007.2076

    Article  Google Scholar 

  35. Vizcaíno M, Mikolajewicz U, Jungclaus J, Schurgers G (2010) Climate modification by future ice sheet changes and consequences for ice sheet mass balance. Clim Dyn 43:301–324. doi:10.1007/s00382-009-0591-y

    Article  Google Scholar 

  36. Weertman J (1961) Stability of ice-age ice sheets. J Geophys Res 66(11):3783–3792. doi:10.1029/JZ066i011p03783

    Article  Google Scholar 

  37. Yoshimori M, Abe-Ouchi A (2012) Sources of spread in multimodel projections of the Greenland Ice Sheet surface mass balance. J Clim 25:1157–1175. doi:10.1175/2011JCLI4011.1

    Article  Google Scholar 

  38. Zickfeld K, Eby M, Matthews H, Weaver A (2009) Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proc Natl Acad Sci 106:16129–16134. doi:10.1073/pnas.0805800106

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a Victoria University of Wellington Doctoral Scholarship to J. Fyke and the New Zealand government ANZICE program. He is currently supported by the U.S. Department of Energy Office of Science. The research was further enabled through use of computing resources provided by WestGrid and Compute/Calcul Canada. We wish to thank two anonymous reviewers and Lionel Carter and Ed Wiebe for greatly improving the quality of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeremy Fyke.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fyke, J., Eby, M., Mackintosh, A. et al. Impact of climate sensitivity and polar amplification on projections of Greenland Ice Sheet loss. Clim Dyn 43, 2249–2260 (2014). https://doi.org/10.1007/s00382-014-2050-7

Download citation

Keywords

  • Climate sensitivity
  • Polar amplification
  • Greenland Ice Sheet