Skip to main content

Advertisement

Log in

Multifractal detrended fluctuation analysis of the δ 18 O record of NGRIP ice core

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The multifractal properties and scaling behaviors of the long-term and recent 2000-year δ 18 O records of NGRIP ice core are investigated by the multifractal detrended fluctuation analysis method. The generalized Hurst exponents, multifractal scaling exponents, and singularity spectrums of two δ 18 O records are derived to verify the multifractiality of two records. And the multifractal behaviors of two records are obviously different, which may reflect the climate change of the recent 2000-year time is quite different from one of the long-term time. In addition, the probability distribution analysis of two δ 18 O records is presented to manifest the different multifractality between two δ 18 O records of NGRIP ice core. Our results will be helpful to research the climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alley RB (2000) Ice-core evidence of abrupt climate changes. Proc Natl Acad Sci USA 97(4):1331–1334

    Article  Google Scholar 

  • Arzel O, England MH (2013) Wind-stress feedback amplification of abrupt millennial-scale climate changes. Clim Dyn 40:983–995

    Article  Google Scholar 

  • Ashkenazy Y, Baker DR, Gildor H, Havlin S (2003) Nonlinearity and multifractality of climate change in the past 420,000 years. Geophys Res Lett 30:2146

    Article  Google Scholar 

  • Ditlevsen PD (1999) Observation of alpha-stable noise and a bistable climate potential in an ice-core record. Geophys Res Lett 26:1441–1444

    Article  Google Scholar 

  • Ditlevsen PD, Ditlevsen OD (2009) On the stochastic nature of the rapid climate shifts during the last ice age. J Clim 22:446–457

    Article  Google Scholar 

  • Ditlevsen PD, Svensmark H, Johnsen S (1996) Contrasting atmospheric and climatic dynamics of last-glacial and Holocene periods. Nature 379:810–812

    Article  Google Scholar 

  • GRIP Project Members (1993) Climate instability during the last interglacial period recorded in the GRIP ice core. Nature 364(6434):203–207

    Article  Google Scholar 

  • Ihlen EAF (2012) Introduction to multifractal detrended fluctuation analysis in matlab. Front Physiol 3:141

    Article  Google Scholar 

  • Johnsen SJ, Dansgaard W, Clausen HB, Langway Jun CC (1972) Oxygen isotope profiles through Antarctic and Greenland ice sheets. Nature 235:429–434

    Article  Google Scholar 

  • Jouzel J et al (1997) Validity of the temperature reconstruction from water isotopes in ice cores. J Geophys Res 102(C12):26471–26487

    Article  Google Scholar 

  • Jouzel J et al (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317(5839):793–796

    Article  Google Scholar 

  • Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE (2002) Multifractal detrended fluctuation analysis of nonstationary time series. Phys A 316:87–114

    Article  Google Scholar 

  • Kantelhardt JW, Koscielny-Bunde E, Rybski D, Braun P, Bunde A, Havli S (2006) Long-term persistence and multifractality of precipitation and river runoff records. J Geophys Res 111:D01106

    Google Scholar 

  • Kaufman DS, Schneider DP, McKay NP, Ammann CM, Bradley RS, Briffa KR, Miller GH, Otto-Bliesner BL, Overpeck JT, Vinther BM (2009) Recent warming reverses long-term Arctic cooling. Science 325(5945):1236–1239

    Article  Google Scholar 

  • Kavasseri RG, Nagarajan R (2005) A multifractal description of wind speed records. Chaos Soliton Fract 24:165–173

    Article  Google Scholar 

  • Knudsen MF, Seidenkrantz M-S, Jacobsen BH, Kuijpers A (2011) Tracking the Atlantic multidecadal oscillation through the last 8,000 years. Nat Commun 2:178

    Article  Google Scholar 

  • Kobashi T, Kawamura K, Severinghaus JP, Barnola J-M, Nakaegawa T, Vinther BM, Box JE (2011) High variability of Greenland surface temperature over the past 4000 years estimated from trapped air in an ice core. Geophys Res Lett 38:L21501

    Article  Google Scholar 

  • Landais A, Masson-Delmotte V, Jouzel J, Raynaud D, Johnsen S, Huber C, Leuenberger M, Schwander J, Minster B (2006) The glacial inception as recorded in the NorthGRIP Greenland ice core: timing, structure and associated abrupt temperature changes. Clim Dyn 26:273–284

    Article  Google Scholar 

  • Lin M, Yan SX, Zhao G, Wang G (2013) Multifractal detrended fluctuation analysis of interevent time series in a modified OFC model. Commun Theor Phys 59:1

    Article  Google Scholar 

  • Livina VN, Kwasniok F, Lohmann G, Kantelhardt JW, Lenton TM (2011) Changing climate states and stability: from Pliocene to present. Clim Dyn 37:2437–2453

    Article  Google Scholar 

  • Lovejoy S (1981) Analysis of rain areas in terms of fractals. In 20th conference on radar meteorology, AMS Boston, pp 476–484

  • Lovejoy S, Mandelbrot B (1985) Fractal properties of rain and a fractal model. Tellus 37:209–232

    Article  Google Scholar 

  • Lovejoy S, Schertzer D (1986a) Scale invariance in climatological temperatures and the spectral plateau. Ann Geophys 4B:01–410

    Google Scholar 

  • Lovejoy S, Schertzer D (1986b) Scale invariance, symmetries, fractals and stochastic simulations of atmospheric phenomena. Bull AMS 67:21–32

    Google Scholar 

  • Lovejoy S, Schertzer D (2012a) Haar wavelets, fluctuations and structure functions: convenient choices for geophysics. Nonlinear Proc Geophys 19:513–527

    Article  Google Scholar 

  • Lovejoy S, Schertzer D (2012b) Low frquency weather and the emergence of the climate. In: Sharma AS, Bunde A, Baker D, Dimiri VP (eds) Extreme events and natural hazards: the complexity perspective. AGU monographs, pp 231–254

  • Lovejoy S, Schertzer D (2013) The weather and climate: emergent laws and multifractal cascades. Cambridge University Press, Cambridge, 496 pp

  • Marsh ND, Ditlevsen PD (1997) Observation of atmospheric and climate dynamics from a high resolution ice core record of a passive tracer over the last glaciation. J Geophys Res 102:D11219–11224

    Article  Google Scholar 

  • North Greenland Ice Core Project members (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431:147–151

    Article  Google Scholar 

  • Norouzzadeh P, Rahmani B (2006) A multifractal detrended fluctuation description of Iranian rial–US dollar exchange rate. Phys A 367:328–336

    Article  Google Scholar 

  • Oświecimka P, Kwapień J, Drożdż S (2005) Multifractality in the stock market: price increments versus waiting times. Phys A 347:626–638

    Article  Google Scholar 

  • Roe GH, Steig EJ (2004) Characterization of millennial-scale climate variability. J Clim 17:1929–1944

    Article  Google Scholar 

  • Ruan YP, Zhou WX (2011) Long-term correlations and multifractal nature in the intertrade durations of a liquid Chinese stock and its warrant, Phys A 390:1646–1654

    Google Scholar 

  • Schertzer D, Lovejoy S (1985) The dimension and intermittency of atmospheric dynamics. In: Launder B (ed) Turbulent shear flow, vol 4. Springer, Berliin, pp 7–33

  • Schmitt F, Lovejoy S, Schertzer D (1995) Multifractal analysis of the greenland ice-core project climate data. Geophys Res Lett 22:1689–1692

    Article  Google Scholar 

  • Steig EJ, Alley RB (2002) Phase relationships between Antarctic and Greenland climate records. Ann Glaciol 35:451–456

    Article  Google Scholar 

  • Telesca L, Lapenna V (2006) Measuring multifractality in seismic sequences. Tectonophysics 423:115–123

    Article  Google Scholar 

  • Vinther BM, Clausen HB, Johnsen SJ, Rasmussen SO, Andersen KK, Buchardt SL, Dahl-Jensen D, Seierstad IK, Siggaard-Andersen M-L, Steffensen JP, Svensson AM, Olsen J, Heinemeier J (2006) A synchronized dating of three Greenland ice cores throughout the Holocene. J Geophys Res 111:D13102

    Article  Google Scholar 

  • Wunsch C (2003) Greenland-Antarctic phase relations and millennial time-scale climate fluctuations in the Greenland ice-cores. Quat Sci Rev 22:1631–1646

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Foundation for Distinguished Young Talents in Higher Education of Guangdong, China (Grant No. LYM10065) and the National Natural Science Foundation of China (Grant No. 11105054) and PCSIRT (Grant No. IRT1243).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Gang Shao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, ZG., Wang, HH. Multifractal detrended fluctuation analysis of the δ 18 O record of NGRIP ice core. Clim Dyn 43, 2105–2109 (2014). https://doi.org/10.1007/s00382-013-2037-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-2037-9

Keywords

Navigation