Skip to main content

Advertisement

Log in

Intra-seasonal drivers of extreme heat over Australia in observations and POAMA-2

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We assess the occurrence and probability of extreme heat over Australia in association with the Southern Annular Mode (SAM), persistent anticyclones over the Tasman Sea, and the Madden–Julian Oscillation (MJO), which have previously been shown to be key drivers of intra-seasonal variations of Australian climate. In this study, extreme heat events are defined as occurring when weekly-mean maximum temperature anomalies exceed the 90th percentile. The observed probability of exceedance is reduced during the positive phase of the SAM and enhanced during the negative phase of the SAM over most of Australia. Persistent anticyclones over the Tasman Sea are described in terms of (1) split-flow blocking at 160°E and (2) high pressure systems located in the vicinity of the subtropical ridge (STRHs), about 10° north of the split-flow blocking region, for which we devise a simple index. Split-flow blocks and STRHs have contrasting impacts on the occurrence of extreme heat over Australia, with STRHs showing enhanced probability of upper decile heat events over southern Australia in all seasons. The observed probability of an upper decile heat event varies according to MJO phase and time of year, with the greatest impact of the MJO on extreme heat occurring over southern Australia (including the Mallee agricultural region) in spring during phases 2–3. We show that this modulation of the probability of extreme heat by the SAM, persistent anticyclones over the Tasman Sea, and the MJO is well simulated in the Bureau of Meteorology dynamical intra-seasonal/seasonal forecast model POAMA-2 at lead times of 2–3 weeks. We further show that predictability of heat extremes increases in association with the negative SAM phase, STRH and MJO, thus providing a basis for skilful intra-seasonal prediction of heat extremes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml.

References

  • Alexander LV, Arblaster JM (2009) Assessing trends in observed and modelled climate extremes over Australia in relation to future projections. Int J Climatol 29:417–435

    Article  Google Scholar 

  • Alexander LV, Hope P, Collins D, Trewin B, Lynch A, Nicholls N (2007) Trends in Australia’s climate means and extremes: a global context. Aust Met Mag 56:1–18

    Google Scholar 

  • Alexander LV, Uotila P, Nicholls N (2009) Influence of sea surface temperature variability on global temperature and precipitation extremes. J Geophys Res 114:D18116. doi:10.1029/2009JD012301

    Article  Google Scholar 

  • Alves O, Wang G, Zhong A, Smith N, Tzeitkin F, Warren G, Schiller A, Godfrey S, Meyers G (2003) POAMA: bureau of meteorology operational coupled model forecast system. In: Proceedings of national drought forum, Brisbane, April 2003, pp 49-56. Available from DPI Publications, Department of Primary Industries, GPO Box 46, Brisbane, Qld 4001, Australia

  • Arblaster JM, Alexander LV (2012) The impact of the El Niño-southern oscillation on maximum temperature extremes. Geophys Res Lett 39:L20702. doi:10.1029/2012GL053409

    Article  Google Scholar 

  • Barnston AG, Mason SJ (2011) Evaluation of IRI’s seasonal climate forecasts for the extreme 15 % tails. Weather Forecast 26:545–554

    Article  Google Scholar 

  • Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, García-Herrera R (2011) The hot summer of 2010: redrawing the temperature record map of Europe. Science 332:220–224

    Article  Google Scholar 

  • Becker EJ, van den Dool H, Peña M (2013) Short-term climate extremes: prediction skill and predictability. J Clim 26:512–531

    Article  Google Scholar 

  • Black E, Blackburn M, Harrison G, Hoskins B, Methven J (2004) Factors contributing to the summer 2003 European heatwave. Weather 59:217–223

    Article  Google Scholar 

  • Casati B, Wilson LJ, Stephenson DB, Nurmi P, Ghelli A, Pocernich M, Damrath U, Ebert EE, Brown BG, Mason S (2008) Forecast verification: current status and future directions. Meteorol Appl 15:3–18

    Article  Google Scholar 

  • Charney JG, DeVore JG (1979) Multiple flow equilibria in the atmosphere and blocking. J Atmos Sci 36:1205–1216

    Article  Google Scholar 

  • Coates L (1996) An overview of fatalities from some natural hazards in Australia. In Proceedings of NDR96 conference on natural disaster reduction. Gold Coast Australia

  • Collins DA, Della-Marta PM, Plummer N, Trewin BC (2000) Trends in annual frequencies of extreme temperature events in Australia. Aust Met Mag 49:277–292

    Google Scholar 

  • Colman R, Deschamps L, Naughton M, Rikus L, Sulaiman A, Puri K, Roff G, Sun Z, Embury G (2005) BMRC atmospheric model (BAM) version3.0: comparison with mean climatology. BMRC research report no. 108, Bur Met, Melbourne, Australia

  • Coughlan M (1983) A comparative climatology of blocking action in the two hemispheres. Aust Met Mag 31:3–13

    Google Scholar 

  • Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Change 2:491–496

    Google Scholar 

  • De Bono A, Giuliani G, Kluser S, Peduzzi P (2004) Impacts of summer 2003 heat wave in Europe. UNEP/DEWA/GRID Eur Environ Alert Bull 2:1–4

    Google Scholar 

  • Ferro CAT, Stephenson DB (2011) Extremal dependence indices: improved verification measures for deterministic forecasts of rare binary events. Weather Forecast 26:699–713

    Article  Google Scholar 

  • Fischer EM, Seneviratne SI, Luthi D, Schär C (2007) Contribution of land-atmosphere coupling to recent European summer heat waves. Geophys Res Lett 34:L06707. doi:10.1029/2006GL029068

    Google Scholar 

  • Fouillet A, Rey G, Laurent F, Pavillon G, Bellec S, Guihenneuc-Jouyaux C, Clavel J, Jougla E, He′mon D (2006) Excess mortality related to the August 2003 heat wave in France. Int Arch Occup Environ Health 80:16–24

    Article  Google Scholar 

  • Frederiksen CS, Zheng X (2007) Variability of seasonal-mean fields arising from intraseasonal variability. Part 3: application to SH winter and summer circulations. Clim Dyn 28:849–866

    Article  Google Scholar 

  • Gilbert N (2010) Russia counts environmental cost of wildfires. Nat News 12 Aug. doi:10.1038/news.2010.404

  • Grainger S, Frederiksen CS, Zheng X (2013) Modes of interannual variability of Southern Hemisphere atmospheric circulation in CMIP3 models: assessment and projections. Clim Dyn 41:479–500

    Article  Google Scholar 

  • Griffiths GM, Chambers LE, Haylock MR, Manton MJ, Nicholls N, Baek H-J, Choi Y, Della-Marta PM, Gosai A, Iga N, Lata R, Laurent V, Maitrepierre L, Nakamigawa H, Ouprasitwong N, Solofa D, Tahani L, Thuy DT, Tibig L, Trewin B, Vediapan K, Zhai P (2005) Change in mean temperature as a predictor of extreme temperature change in the Asia-Pacific region. Int J Climatol 25:1301–1330

    Article  Google Scholar 

  • Hamilton E, Eade R, Graham RJ, Scaife AA, Smith DM, Maidens A, MacLachlan C (2012) Forecasting the number of extreme daily events on seasonal timescales. J Geophys Res 117:D03114. doi:10.1029/2011JD016541

    Google Scholar 

  • Hendon HH, Thompson DWJ, Wheeler MC (2007) Australian rainfall and surface temperature variations associated with the southern hemisphere annular mode. J Clim 20:2452–2467

    Article  Google Scholar 

  • Hendon HH, Lim E-P, Liu G (2012) The role of air-sea interaction for prediction of Australian summer monsoon rainfall. J Clim 25:1278–1290

    Article  Google Scholar 

  • Hendon HH, Lim E-P, Arblaster JM, Anderson DLT (2013) Causes and predictability of the record wet east Australian spring 2010. Clim Dyn. doi:10.1007/s00382-013-1700-5

    Google Scholar 

  • Hogan RJ, Mason IB (2012) Deterministic forecasts of binary events. In Jolliffe IT, Stephenson DB (eds) Forecast verification: a practitioner’s guide in atmospheric science, 2nd edn. Wiley doi:10.1002/9781119960003.ch3

  • Hudson D, Marshall AG, Alves O (2011a) Intraseasonal forecasting of the 2009 summer and winter Australian heat waves using POAMA. Weather Forecast 26:257–279

    Article  Google Scholar 

  • Hudson D, Alves O, Hendon HH, Wang G (2011b) The impact of atmospheric initialisation on seasonal prediction of tropical Pacific SST. Clim Dyn 36:1155–1171

    Article  Google Scholar 

  • Hudson D, Marshall A, Yin Y, Alves O, Hendon H (2013) Improving intraseasonal prediction with a new ensemble generation strategy. Mon Weather Rev. doi:10.1175/MWR-D-13-00059.1

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, 996 pp

  • Jones PA (1991) Historical records of cloud cover and climate for Australia. Aust Meteor Mag 39:181–189

    Google Scholar 

  • Jones DA, Trewin BC (2000) On the relationships between the El Niño-Southern Oscillation and Australian land surface temperature. Int J Climatol 20:697–719

    Article  Google Scholar 

  • Jones DA, Wang W, Fawcett R (2009) High-quality spatial climate data-sets for Australia. Aust Meteorol Oceanogr J 58:233–248

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds B, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Karl TR, Knight RW (1997) The 1995 Chicago heatwave: how likely is a recurrence? Bull Amer Meteor Soc 78:1107–1119

    Article  Google Scholar 

  • Karoly DJ (2009) The recent bushfires and extreme heatwave in southeast Australia. Bull Aust Meteor Oceanogr Soc 22:10–13

    Google Scholar 

  • Kenyon J, Hegerl GC (2008) Influence of modes of climate variability on global temperature extremes. J Clim 21:3872–3889

    Article  Google Scholar 

  • Kharin VV, Zwiers FW, Zhang XB, Hegerl GC (2007) Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Clim 20:1419–1444

    Article  Google Scholar 

  • Kysely J (2009) Recent severe heat waves in central Europe: how to view them in a long-term prospect? Int J Clim 30:89–109. doi:10.1002/joc.1874

    Google Scholar 

  • Lim E-P, Hendon HH, Rashid H (2013) Seasonal predictability of the Southern Annular Mode due to its association with ENSO. J Clim 26:8037–8054

    Article  Google Scholar 

  • Madden RA, Julian PR (1971) Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci 28:702–708

    Article  Google Scholar 

  • Madden RA, Julian PR (1972) Description of global-scale circulation cells in the tropics with a 40–50 day period. J Atmos Sci 29:1109–1123

    Article  Google Scholar 

  • Manabe S, Holloway JL (1975) The seasonal variation of the hydrological cycle as simulated by a global model of the atmosphere. J Geophys Res 80:1617–1649

    Article  Google Scholar 

  • Marshall AG, Hudson D, Wheeler MC, Hendon HH, Alves O (2012a) Simulation and prediction of the Southern Annular Mode and its influence on Australian intra-seasonal climate in POAMA. Clim Dyn 38:2483–2502

    Article  Google Scholar 

  • Marshall AG, Hudson D, Wheeler MC, Hendon HH, Alves O (2012b) Evaluating key drivers of Australian intra-seasonal climate variability in POAMA-2: a progress report. CAWCR Res Lett 7:10–16

    Google Scholar 

  • Marshall AG, Hudson D, Hendon HH, Pook MJ, Alves O, Wheeler MC (2013) Simulation and prediction of blocking in the Australian region and its influence on intra-seasonal rainfall in POAMA-2. Clim Dyn. doi:10.1007/s00382-013-1974-7

    Google Scholar 

  • Matsueda M (2011) Predictability of Euro-Russian blocking in summer of 2010. Geophys Res Lett 38:L06801. doi:10.1029/2010GL046557

    Google Scholar 

  • Min S-K, Cai W, Whetton P (2013) Influence of climate variability on seasonal extremes over Australia. J Geophys Res Atmos 118:643–654

    Article  Google Scholar 

  • Nairn J, Fawcett R (2013) Defining heatwaves: heatwave defined as a heat-impact event servicing all community and business sectors in Australia. CAWCR Tech Rep No 60, 96 pp

  • Nicholls N, Drosdowsky W, Lavery B (1997) Australian rainfall variability and change. Weather 52:66–72

    Article  Google Scholar 

  • Nordeng T-E (1994) Extended versions of the convective parameterization scheme at ECMWF and their impact upon the mean climate and transient activity of the model in the tropics. Research Dept Technical Memorandum No. 206, ECMWF, Shinfield Park Reading RG2 9AX, United Kingdom

  • Oke PR, Schiller A, Griffin DA, Brassington GB (2005) Ensemble data assimilation for an eddy-resolving ocean model of the Australian region. Q J R Meteorol Soc 131:3301–3311

    Article  Google Scholar 

  • Perkins SE, Alexander LV (2013) On the measurement of heat waves. J Clim 26:4500–4517

    Article  Google Scholar 

  • Perkins SE, Alexander LV, Nairn JR (2012) Increasing frequency, intensity and duration of observed heatwaves and warm spells. Geophys Res Lett 39:L20714. doi:10.1029/2012GL053361

    Article  Google Scholar 

  • Pezza AB, van Rensch P, Cai W (2012) Severe heat waves in Southern Australia: synoptic climatology and large scale connections. Clim Dyn 38:209–224

    Article  Google Scholar 

  • Plummer N, Salinger MJ, Nicholls N, Suppiah R, Hennessy KJ, Leighton RM, Trewin B, Page CM, Lough JM (1999) Changes in climate extremes over the Australian region and New Zealand during the twentieth century. Clim Change 42:183–202

    Article  Google Scholar 

  • Pook MJ, Gibson T (1999) Atmospheric blocking and storm tracks during SOP-1 of the FROST Project. Aust Meteor Mag 48:51–60

    Google Scholar 

  • Power S, Tseitkin F, Torok SJ, Lavery B, Dahni R, McAvaney B (1998) Australian temperature, Australian rainfall and the Southern Oscillation, 1910–1992: coherent variability and recent changes’. Aust Meteor Mag 47:85–101

    Google Scholar 

  • Rahmstorf S, Coumou D (2011) Increase of extreme events in a warming world. Proc Natl Acad Sci USA 108:17905–17909

    Article  Google Scholar 

  • Risbey JS, Pook MJ, McIntosh PC, Wheeler MC, Hendon HH (2009) On the remote drivers of rainfall variability in Australia. Mon Weather Rev 137:3233–3253

    Article  Google Scholar 

  • Schiller A., Godfrey JS, McIntosh P, Meyers G (1997) A global ocean general circulation model climate variability studies. CSIRO Marine research report no 227

  • Schiller A, Godfrey JS, McIntosh PC, Meyers G, Smith NR, Alves O, Wang G, Fiedler R (2002) A new version of the australian community ocean model for seasonal climate prediction. CSIRO marine research report no. 240

  • Spiegel MR (1961) Schaum’s outline of theory and problems of statistics. Schaum Publishing Company, New York, 359 pp

    Google Scholar 

  • Stockdale TN (1997) Coupled ocean–atmosphere forecasts in the presence of climate drift. Mon Weather Rev 125:809–818

    Article  Google Scholar 

  • Tiedke M (1989) A comprehensive mass flux scheme for cumulus parameterisation in large-scale models. Mon Weather Rev 117:1779–1800

    Article  Google Scholar 

  • Trigo R, Garia-Herrera R, Diaz J, Trigo I, Valente M (2005) How exceptional was the early August 2003 heatwave in France? Geophys Res Lett 32:1071–1074

    Article  Google Scholar 

  • Uppala SM et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Valcke S, Terray L, Piacentini A (2000) OASIS 2.4 Ocean Atmospheric Sea Ice Soil user’s guide, Version 2.4. CERFACS technical report, CERFACS TR/CMGC/00-10, 85 pp

  • Wang G, Alves O, Smith N (2005) BAM3.0 tropical surface flux simulation and its impact on SST drift in a coupled model. BMRC Research Report No. 107, Bur Met Australia

  • Wang Y, Kowalczyk E, Law R, Abramowitz G (2006) The CSIRO Atmosphere Biosphere Land Exchange Model and future development for ACCESS. BMRC Research Report No. 123, Bur Met Australia

  • Wheeler MC, Hendon HH (2004) An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon Weather Rev 132:1917–1932

    Article  Google Scholar 

  • Wheeler MC, Hendon HH, Cleland S, Meinke H, Donald A (2009) Impacts of the Madden–Julian oscillation on Australian rainfall and circulation. J Clim 22:1482–1498

    Article  Google Scholar 

  • Yin Y, Alves O, Oke PR (2011) An ensemble ocean data assimilation system for seasonal prediction. Mon Weather Rev 139:786–808

    Article  Google Scholar 

  • Zhong A, Alves O, Hendon H, Rikus L (2006) On aspects of the mean climatology and tropical interannual variability in the BMRC atmospheric model (BAM 3.0). BMRC research report no. 121, Bur Met, Melbourne, Australia

Download references

Acknowledgments

This work was supported by the Managing Climate Variability Program of Grains Research and Development Corporation. We extend our thanks to Peter McIntosh and the two anonymous reviewers for generously giving their time to help improve the overall quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Marshall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marshall, A.G., Hudson, D., Wheeler, M.C. et al. Intra-seasonal drivers of extreme heat over Australia in observations and POAMA-2. Clim Dyn 43, 1915–1937 (2014). https://doi.org/10.1007/s00382-013-2016-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-2016-1

Keywords

Navigation