Skip to main content

Advertisement

Log in

On the relationships between features of the depth–latitude meridional overturning streamfunctions across global coupled climate models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A comparative analysis of the state and response of the latitude–depth meridional overturning streamfunctions in the Climate Model Inter-comparison Project 3 (CMIP3) model set is presented. Simulated overturning strengths of the North Atlantic cell tend to converge towards observational estimates. The models whose simulations of the North Atlantic cell are closest to observational estimates indicate a 29.5 ± 13 % decrease in the maximum intensity of that cell by 2,100. In contrast, agreement with regard to the state and the response to anthropogenic radiative forcing of the global Southern Ocean abyssal cell is poor among the models. A weak relationship between the mean state and the response of the abyssal cell can be used to constrain the reduction of the Southern abyssal cell by 2,100 to 29.3 ± 20.7 %, in rough agreement with the decrease predicted in the Northern cell. The biases across the CMIP3 models in the Northern deep cell and Southern abyssal cell cannot be related dynamically by a buoyancy-based seesaw-like argument. The absence or presence of characteristic relationships between the state and evolution of different features of the overturning streamfunction indicate that the main reasons for across-model spread are how each model deals with subgrid-scale processes and viscosity. This highlights the fact that subgrid-scale parameterizations and resolution improvements should be a priority of model development. These factors are able to explain qualitatively the inter-model differences between the Northern overturning cells of the different models. Across-model differences in the winds over the Southern Ocean are responsible for much of the disparity in the overturning circulation cells of the Southern Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barker S, Diz P, Vautravers M, Pike J, Knorr G, Hall I, Broecker W (2009) Interhemispheric Atlantic seesaw response during the last deglaciation. Nature 457:1097–1103

    Article  Google Scholar 

  • Brix H, Gerdes R (2003) North Atlantic Deep Water and Antarctic Bottom Water: their interaction and influence on the variability of the global ocean circulation. J Geophys Res Oceans 108:C23022. doi:10.1029/2002JC001335

    Article  Google Scholar 

  • Broecker W, Matsumoto K, Clark E, Hajdas I, Bonani G (1999) Radiocarbon age differences between coexisting foraminiferal species. Paleoceanography 14(4):431–436

    Article  Google Scholar 

  • Broecker WS (1998) Paleocean circulation during the last deglaciation: a bipolar seesaw? Paleoceanography 13(2):119–121

    Article  Google Scholar 

  • Broecker WS, Sutherland S, Peng TH (1999) A possible 20th-century slowdown of Southern Ocean deep water formation. Science 286(5442):1132–1135

    Article  Google Scholar 

  • Bryan F (1986) High-latitude salinity effects and interhemispheric thermohaline circulations. Nature 323:301–304

    Article  Google Scholar 

  • Bryan F (1987) sensitivity of primitive equation ocean general-circulation models. J Phys Oceanogr 17(7):970–985

    Article  Google Scholar 

  • Bryan K, Lewis LJ (1979) A water mass model of the world ocean. J Geophys Res 84:2503–2517

    Article  Google Scholar 

  • Carman J, McClean J (2011) Investigation of IPCC AR4 coupled climate model North Atlantic mode water formation. Ocean Model 40:14–34

    Article  Google Scholar 

  • Crowley T (1992) North Atlantic Deep Water cools the southern hemisphere. Paleoceanography 7:489–497

    Article  Google Scholar 

  • Cunningham SA, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth HR, Grant EM, Hirschi JJM, Beal LM, Meinen CS, Bryden HL (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science 317(5840):935–938

    Article  Google Scholar 

  • Danabasoglu G, McWilliams J (1995) Sensitivity of the global circulation to parameterizations of mesoscale tracer transport. J Clim 8:2967–2987

    Article  Google Scholar 

  • Danabasoglu G, McWilliams JC, Gent PR (1994) The role of mesoscale tracer transports in the global ocean circulation. Science 264(5162):1123–1126

    Article  Google Scholar 

  • Döös K, Nycander J, Coward A (2008) Lagrangian decomposition of the Deacon cell. J Geophys Res 113:C07028

    Google Scholar 

  • Duffy P, Caldeira K (1997) Sensitivity of simlulated salinity in a three-dimensional ocean model to upper ocean transport of salt from sea–ice formation. Geophys Res Lett 24(11):1323–1326

    Article  Google Scholar 

  • Duffy P, Caldeira K (1999) Sensitivity of simulated salinities in a three-dimensional ocean general circulation model to vertical mixing of destabilizing surface fluxes. Clim Dyn 15:81–88

    Article  Google Scholar 

  • Farneti R, Delworth T (2010) The role of mesoscale eddies in the remote oceanic response to altered southern hemisphere winds. J Phys Oceanogr 40:2348–2354

    Article  Google Scholar 

  • Fuerst J, Levermann A (2012) A minimal model for wind- and mixing-driven overturning: threshold behavior for both driving mechanisms. Clim Dyn 38:239–260

    Article  Google Scholar 

  • Fyfe JC, Saenko OA (2006) Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys Res Lett 33:L06701

    Google Scholar 

  • Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20(1):150–155

    Article  Google Scholar 

  • Gent PR, Willibrand J, McDougall TJ, McWilliams JC (1995) Parameterizing eddy-induced tracer transports in ocean circulation models. J Phys Oceanogr 25:463–474

    Article  Google Scholar 

  • Gerdes R, Koeberle C, Willebrand J (1991) The influence of numerical advection schemes on the results of ocean general circulation models. Clim Dyn 5:211–226

    Article  Google Scholar 

  • Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res 113:D06104

    Google Scholar 

  • Gnanadesikan A (1999) A simple predictive model for the structure of the oceanic pycnocline. Science 283(5410):2077–2079

    Article  Google Scholar 

  • Gnanadesikan A, Dixon KW, Griffies SM, Balaji V, Barreiro M, Beesley JA, Cooke WF, Delworth TL, Gerdes R, Harrison MJ, Held IM, Hurlin WJ, Lee HC, Liang Z, Nong G, Pacanowski RC, Rosati A, Russell J, Samuels BL, Song Q, Spelman MJ, Stouffer RJ, Sweeney CO, Vecchi G, Winton M, Wittenberg AT, Zeng F, Zhang R, Dunne JP (2006) GFDL’s CM2 global coupled climate models. Part II: the baseline ocean simulation. J Clim 19(5):675–697

    Article  Google Scholar 

  • Gregory J, Dixon K, Stouffer R, Weaver A, Driesschaert E, Eby M, Fichefet T, Hasumi H, A H, Jungclaus J, Kamenkovich I, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Sokolov A, Thorpe R (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys Res Lett 32:L12703

    Google Scholar 

  • Griffies SM (1998) The Gent–McWilliams skew flux. J Phys Oceanogr 28(5):831–841

    Article  Google Scholar 

  • Griffies SM, Pacanowski RC, Hallberg RW (2000) Spurious diapycnal mixing associated with advection in a z-coordinate ocean model. Mon Weather Rev 128(3):538–564

    Article  Google Scholar 

  • Hofmann M, Morales Maqueda M (2006) Performance of a second-order moments advection scheme in an ocean general circulation model. J Geophys Res 111:C05006

    Google Scholar 

  • Hofmann M, Rahmstorf S (2009) On the stability of the Atlantic meridional overturning circulation. Proc Natl Acad Sci 106(49):20584–20589

    Article  Google Scholar 

  • Hunke E, Maltrud M, Hecht M (2008) On the grid dependence of lateral mixing parameterizations for global ocean simulations. Ocean Model 20:115–133

    Article  Google Scholar 

  • Jochum M (2009) Impact of latitudinal variations in vertical diffusivity on climate simulations. J Geophys Res 114:C01010

    Google Scholar 

  • Johnson H, Marshall D, Sproson D (2007) Reconciling theories of a mechanically driven meridional overturning circulation with thermohaline forcing and multiple equilibria. Clim Dyn 29:821–836

    Article  Google Scholar 

  • Kamenkovich IV, Goodman PJ (2000) The dependance of AABW transport in the Atlantic on vertical diffusivity. Geophys Res Lett 27(22):3729–3742

    Article  Google Scholar 

  • Knutti R (2010) The end of model democracy? Clim Chang 102:395–404

    Article  Google Scholar 

  • Knutti R, Flueckiger J, Stocker T, Timmermann A (2004) Strong hemispheric coupling of glacial climate through freshwater discharge and ocean circulation. Nature 430:851–856

    Article  Google Scholar 

  • Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl G (2010) Challenges in combining projections from multiple climate models. J Clim 23:2739–2758

    Article  Google Scholar 

  • Kuhlbrodt T, Gregory JM (2012) Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophys Res Lett 39:L18608

    Article  Google Scholar 

  • Lee S-K, Park W, van Sebille E, Baringer MO, Wang C, Enfield DB, Yeager SG, Kirtman BP (2011) What caused the significant increase in Atlantic Ocean heat content since the mid-20th century? Geophys Res Lett 38:L17607

    Google Scholar 

  • Levermann A, Schewe J, Montoya M (2007) Lack of bipolar see–saw in response to Southern Ocean wind reduction. Geophys Res Lett 34:L12711

    Article  Google Scholar 

  • Mahlstein I, Knutti R (2011) Ocean heat transport as a cause for model uncertainty in projected Arctic warming. J Clim 24:1451–1460

    Article  Google Scholar 

  • Manabe S, Stouffer R (1988) Two stable equilibria of a coupled ocean atmosphere model. J Clim 1:841–866

    Article  Google Scholar 

  • Manabe S, Stouffer RJ (1999) Are two modes of thermohaline circulation stable? Tellus Ser A Dyn Meteorol Oceanogr 51(3):400–411

    Article  Google Scholar 

  • Medhaug I, Furevik T (2011) North Atlantic 20th century multidecadal variability in coupled climate models: sea surface temperature and ocean overturning circulation. Ocean Sci 7:389–404

    Article  Google Scholar 

  • Meehl G, Covey C, McAvaney B, Latif M, Stouffer R (2005) Overview of the coupled model intercomparison project. Bull Am Meteorol Soc 86:89–93

    Article  Google Scholar 

  • Meehl G, Covey C, Delworth T, Latif M, McAvaney B, Mitchell J, Stouffer R, Taylor K (2007) The WCRP CMIP3 mulimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394

    Article  Google Scholar 

  • Mignot J, Levermann A, Griesel A (2006) A decomposition of the Atlantic meridional overturning circulation into physical components using its sensitivity to vertcial diffusivity. J Phys Oceanogr 36:636–650

    Article  Google Scholar 

  • Munk W, Wunsch C (1998) Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res Part I Oceanogr Res Pap 45(12):1977–2010

    Article  Google Scholar 

  • Nikurashin M, Vallis G (2011) A theory of deep stratification and overturning circuation in the ocean. J Phys Oceanogr 41:485–501. doi:10.1175/2010JPO4529.1

    Article  Google Scholar 

  • Orsi AH, Johnson GC, Bullister JL (1999) Circulation, mixing, and production of Antarctic bottom water. Progr Oceanogr 43(1):55–109

    Article  Google Scholar 

  • Orsi AH, Smethie WM, Bullister JL (2002) On the total input of Antarctic waters to the deep ocean: a preliminary estimate from chlorofluorocarbon measurements. J Geophys Res Ocean 107:C83122. doi:10.1029/2001JC000976

    Google Scholar 

  • Randall D, Wood R, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer R, Sumi A, Taylor K (2007) Climate change 2007: the physical science basis. Contribution of the working group I to the fourth assessement report in the intergovernmental panel on climate change, chap Climate models and their evaluation. Cambridge University Press

  • Russell J, Stouffer R, Dixon K (2007) Corrigendum. J Clim 20(16):4287

    Article  Google Scholar 

  • Russell JL, Dixon KW, Gnanadesikan A, Stouffer RJ, Toggweiler JR (2006) The southern hemisphere westerlies in a warming world: propping open the door to the deep ocean. J Clim 19(24):6382–6390

    Article  Google Scholar 

  • Russell JL, Stouffer RJ, Dixon KW (2006b) Intercomparison of the Southern Ocean circulations in IPCC coupled model control simulations. J Clim 19(18):4560–4575

    Article  Google Scholar 

  • Schmittner A, Weaver AJ (2001) Dependance of multiple climate states on ocean mixing parameters. Geophys Res Lett 28(6):1027–1030

    Article  Google Scholar 

  • Schmittner A, Latif M, Schneider B (2005) Model projections of the North Atlantic thermohaline ciculation for the 21st century assessed by observations. Geophys Res Lett 32:L23710

    Article  Google Scholar 

  • Schneider B, Latif M, Schmittner A (2007) Evaluation of different methods to assess model projections of the future evolution of the Atlantic meridional overturning circulation. J Clim 20:2121–2132

    Article  Google Scholar 

  • Sen Gupta A, Santoso A, Taschetto A, Ummenhoffer C, Trevena J, England M (2009) Projected changes to the Southern Hemisphere Ocean and sea ice in the IPCC AR4 models. J Clim 22:3047–3078

    Article  Google Scholar 

  • Severinghaus JP (2009) Southern see–saw seen. Nature 457:1093–1094

    Article  Google Scholar 

  • Shin SI, Liu Z, Otto-Bliesner B, Kutzbach J, Vavrus S (2003) Southern Ocean sea–ice control of the glacial North Atlantic thermohaline circulation. Geophys Res Lett 30(2):1096

    Article  Google Scholar 

  • Sijp W, England M (2006) Sensitivity of the Atlantic thermohaline circulation and the its stability to basin-scale variations in vertical mixing. J Clim 19:5467–5478

    Article  Google Scholar 

  • Speer K, Rintoul SR, Sloyan B (2000) The diabatic Deacon cell. J Phys Oceanogr 30(12):3212–3222

    Article  Google Scholar 

  • Stocker T (1998) The seesaw effect. Science 282:61–62

    Article  Google Scholar 

  • Stocker TF, Johnsen SJ (2003) A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18(4):1087. doi:10.1029/2003PA000920

    Article  Google Scholar 

  • Stoessel A, Kim SJ, Drijfhout S (1998) The impact of Southern Ocean Sea Ice in a sea ice in a global ocean model. J Phys Oceanogr 28:1999–2018

    Article  Google Scholar 

  • Stoessel A, Yan K, Kim SJ (2002) On the role of sea ice and convection in a global ocean model. J Phys Oceanogr 32:1194–1208

    Article  Google Scholar 

  • Stouffer R, Manabe S, Bryan K (1989) Interhemispheric asymmetry in climate response to a gradual increase of atmospheric CO2. Nature 342:660–662

    Article  Google Scholar 

  • Stouffer R, Yin J, Gregory J et al (2006) Investigating the causes of the response of the thermohaline circulation to past and fugure climate changes. J Clim 19:1365–1387

    Article  Google Scholar 

  • Talley LD (2003) Shallow, intermediate, and deep overturning components of the global heat budget. J Phys Oceanogr 33(3):530–560

    Article  Google Scholar 

  • Talley LD, Reid JL, Robbins PE (2003) Data-based meridional overturning streamfunctions for the global ocean. J Clim 16(19):3213–3226

    Article  Google Scholar 

  • Toggweiler JR, Samuels B (1995) Effect of drake passage on the global thermohaline circulation. Deep Sea Res Part I Oceanogr Res Pap 42(4):477–500

    Article  Google Scholar 

  • Toggweiler JR, Samuels B (1995) Effect of sea–ice on the salinity of Antarctic bottom waters. J Phys Oceanogr 25(9):1980–1997

    Article  Google Scholar 

  • Toggweiler JR, Samuels B (1998) On the ocean’s large-scale circulation near the limit of no vertical mixing. J Phys Oceanogr 28(9):1832–1852

    Article  Google Scholar 

  • Trevena J, Sijp W, England M (2008) North Atlantic Deep Water collapse triggered by a Southern Ocean meltwater pulse in a glacial climate state. Geophys Res Lett 35:L09704

    Google Scholar 

  • Tsujino H, Hasumi H, Suginohara N (2000) Deep Pacific circulation controlled by vertical diffusivity at the lower thermocline depth. J Phys Oceanogr 30:2853–2865

    Article  Google Scholar 

  • Tziperman E (2000) Proximity of the present-day thermohaline circulation to an instability threshold. J Phys Oceanogr 30:90–104

    Article  Google Scholar 

  • Tziperman E, Zebiak SE, Cane MA (1997) Mechanisms of seasonal–ENSO interaction. J Atmos Sci 54(1):61–71

    Article  Google Scholar 

  • Weber S, Drijfhout S, Abe-Ouchi A, Crucifix M, Eby M, Ganopolski A, Murakami S, Otto-Bliesner B, Peltier W (2007) The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations. Clim Past 3:51–64

    Article  Google Scholar 

  • Weigel A, Knutti R, Liniger M, Appenzeller C (2010) Risks of model weighting in multimodel climate projections. J Clim 23:4175–4191

    Article  Google Scholar 

  • Yang J (2003) On the importance of resolving the western boundary layer in wind-driven ocean general circulation models. Ocean Model 5:357–379

    Article  Google Scholar 

Download references

Acknowledgments

This material is largely based on work performed while I was a graduate student in Princeton University and was made possible by the generous support of Jorge L. Sarmiento through grants from the US National Science Foundation No. OCE-0327189 and OCE-0727170, the Office of Science (BER), US Department of Energy under Award No. DE-FG02-07ER64467, and BP and Ford Motor Company through the Carbon Mitigation Initiative. Completion and publication were made possible thanks to a post-doctoral James Martin Fellowship from the 21st century Ocean Institute at the Oxford Martin School and the Department of Earth Sciences in the University of Oxford, UK. I acknowledge especially Syukuro Manabe and Kirk Bryan for many inspiring and motivating discussions on various aspects of climate dynamics, climate modelling, model interpretation and model limitations, and J. L. Sarmiento, A. Gnanadesikan, R. M. Key and K. B. Rodgers for providing comments on early versions of this manuscript. I would also like to thank the reviewers for their valuable help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Plancherel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plancherel, Y. On the relationships between features of the depth–latitude meridional overturning streamfunctions across global coupled climate models. Clim Dyn 42, 2983–3004 (2014). https://doi.org/10.1007/s00382-013-1984-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1984-5

Keywords

Navigation