Skip to main content

Advertisement

Log in

On the misinterpretation of the North Atlantic Oscillation in CMIP5 models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The representation of the wintertime North Atlantic Oscillation (NAO) and its relationship with atmospheric blocking and the Atlantic jet stream is investigated in a set of CMIP5 models. It is shown that some state-of-the-art climate models are unable to correctly simulate the physical processes connected to the NAO. This is especially true for models with a strongly underestimated frequency of high-latitude blocking over Greenland. In these models the first empirical orthogonal function (EOF1) of the Euro-Atlantic sector can represent at least three different categories of dominant modes of variability associated with different prevalent regions of blocking occurrence and jet stream displacements. It is therefore possible to show that such “biased NAOs” are connected with different dynamical processes with respect to the canonical NAO seen in observations. Since the NAO is a widely used concept in scientific community, the consequent “dynamical misinterpretation” of the NAO that can result when climate models are analyzed may have important implications for the NAO-related studies. This may be especially relevant for the ones involving climate scenarios, since these modeled NAOs may react differently to greenhouse gas forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ambaum M, Hoskins B, Stephenson D (2001) Arctic oscillation or North Atlantic Oscillation? J Clim 14(16):3495–3507

    Article  Google Scholar 

  • Anstey JA, Davini P, Gray LJ, Woollings TJ, Butchart N, Cagnazzo C, Christiansen B, Hardiman SC, Osprey SM, Yang S (2013) Multi-model analysis of Northern Hemisphere winter blocking: model biases and the role of resolution. J Geophys Res Atmos 118:3956–3971

    Google Scholar 

  • Athanasiadis P, Wallace J, Wettstein J (2010) Patterns of wintertime jet stream variability and their relation to the storm tracks. J Atmos Sci 67(5):1361–1381

    Article  Google Scholar 

  • Barnes E, Hartmann D (2010) Dynamical feedbacks and the persistence of the NAO. J Atmos Sci 67:851–864

    Article  Google Scholar 

  • Barnes E, Hartmann D (2011) Rossby Wave scales, propagation, and the variability of eddy-driven jets. J Atmos Sci 68(12):2893–2908

    Article  Google Scholar 

  • Barnes E, Hartmann D (2012) Detection of Rossby wave breaking and its response to shifts of the midlatitude jet with climate change. J Geophys Res 117(D9):D09,117

    Google Scholar 

  • Barnes EA, Polvani L (2013) Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J Clim 26:7117–7135

    Google Scholar 

  • Benedict J, Lee S, Feldstein S (2004) Synoptic view of the North Atlantic Oscillation. J Atmos Sci 61(2):121–144

    Article  Google Scholar 

  • Berrisford P, Hoskins B, Tyrlis E (2007) Blocking and Rossby wave breaking on the dynamical tropopause in the Southern Hemisphere. J Atmos Sci 64:2881–2898

    Article  Google Scholar 

  • Casado M, Pastor M (2012) Use of variability modes to evaluate AR4 climate models over the Euro-Atlantic region. Clim Dyn 38(1):225–237

    Article  Google Scholar 

  • Cassou C, Terray L, Hurrell J, Deser C (2004) North Atlantic winter climate regimes: spatial asymmetry, stationarity with time, and oceanic forcing. J Clim 17:1055–1067

    Article  Google Scholar 

  • Compo G, Whitaker J, Sardeshmukh P, Matsui N, Allan R, Yin X, Gleason B, Vose R, Rutledge G, Bessemoulin P et al (2011) The Twentieth Century Reanalysis project. Q J R Meteorol Soc 137(654):1–28

    Article  Google Scholar 

  • Croci-Maspoli M, Schwierz C, Davies H (2007) Atmospheric blocking: space-time links to the NAO and PNA. Clim Dyn 29:713–725

    Article  Google Scholar 

  • Davini P, Cagnazzo C, Gualdi S, Navarra A (2012) Bidimensional diagnostics, variability and trends of Northern Hemisphere blocking. J Clim 25(19):6509–6996

    Article  Google Scholar 

  • Davini P, Cagnazzo C, Neale R, Tribbia J (2012) Coupling between Greenland blocking and the North Atlantic Oscillation pattern. Geophys Res Lett 39(14):L14,701

    Article  Google Scholar 

  • Dommenget D, Latif M (2002) A cautionary note on the interpretation of EOFs. J Clim 15(2):216–225

    Article  Google Scholar 

  • Dunn-Sigouin E, Son SW (2013) Northern Hemisphere blocking frequency and duration in the CMIP5 models. J Geophys Res Atmos

  • Franzke C, Lee S, Feldstein S (2004) Is the North Atlantic Oscillation a breaking wave? J Atmos Sci 61:145–160

    Article  Google Scholar 

  • Gillett N, Graf H, Osborn T (2003) Climate change and the North Atlantic Oscillation. Geophys Monogr Ser 134:193–210

    Google Scholar 

  • Handorf D, Dethloff K (2012) How well do state-of-the-art atmosphere-ocean general circulation models reproduce atmospheric teleconnection patterns? Tellus A 64(19777):1–27

    Google Scholar 

  • Hurrell J, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation. Geophys Monogr Ser 134:1–36

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kunz T, Fraedrich K, Lunkeit F (2009) Impact of synoptic-scale wave breaking on the NAO and its connection with the stratosphere in ERA-40. J Clim 22(20):5464–5480

    Article  Google Scholar 

  • Masato G, Hoskins BJ, Woollings T (2013) Winter and summer Northern hemisphere blocking in CMIP5 models. J Clim 26:7044–7059

    Article  Google Scholar 

  • McIntyre ME, Palmer T (1983) Breaking planetary waves in the stratosphere. Nature 305:593–600

    Article  Google Scholar 

  • Monahan AH, Fyfe JC (2006) On the nature of zonal jet EOFs. J Clim 19(24):6409–6424

    Article  Google Scholar 

  • Monahan AH, Fyfe JC, Ambaum MH, Stephenson DB, North GR (2009) Empirical orthogonal functions: the medium is the message. J Clim 22(24):6501–6514

    Article  Google Scholar 

  • Nakamura H, Wallace JM (1991) Skewness of low-frequency fluctuations in the tropospheric circulation during the Northern hemisphere winter. J Atmos Sci 48(12):1441–1448

    Article  Google Scholar 

  • Pelly J, Hoskins B (2003) A new perspective on blocking. J Atmos Sci 60:743–755

    Article  Google Scholar 

  • Peters D, Waugh D (1996) Influence of barotropic shear on the poleward advection of upper-tropospheric air. J Atmos Sci 53:3013–3031

    Article  Google Scholar 

  • Rex D (1950) Blocking action in the middle troposphere and its effect upon regional climate: I. An aerological study of blocking action. Tellus 2:196–211

    Article  Google Scholar 

  • Riviere G, Orlanski I (2007) Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation. J Atmos Sci 64(2):241–266

    Article  Google Scholar 

  • Scherrer S, Croci-Maspoli M, Schwierz C, Appenzeller C (2006) Two-dimensional indices of atmospheric blocking and their statistical relationship with winter climate patterns in the Euro-Atlantic region. Int J Climatol 26:233–249

    Article  Google Scholar 

  • Stephenson D, Hannachi A, O’Neill A (2004) On the existence of multiple climate regimes. Q J R Meteorol Soc 130(597):583–605

    Article  Google Scholar 

  • Stephenson D, Pavan V, Collins M, Junge M, Quadrelli R (2006) North Atlantic Oscillation response to transient greenhouse gas forcing and the impact on European winter climate: a CMIP2 multi-model assessment. Clim Dyn 27(4):401–420

    Article  Google Scholar 

  • Stoner A, Hayhoe K, Wuebbles D (2009) Assessing general circulation model simulations of atmospheric teleconnection patterns. J Clim 22(16):4348–4372

    Article  Google Scholar 

  • Strong C, Magnusdottir G (2008) Tropospheric Rossby wave breaking and the NAO/NAM. J Atmos Sci 65(9):2861–2876

    Article  Google Scholar 

  • Taylor K (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192

    Article  Google Scholar 

  • Taylor K, Stouffer R, Meehl G (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485

    Article  Google Scholar 

  • Thorncroft C, Hoskins B, McIntyire M (1993) Two paradigms of baroclinic wave life-cycle behaviour. Q J R Meteorol Soc 119:17–55

    Article  Google Scholar 

  • Tibaldi S, Molteni F (1990) On the operational predictability of blocking. Tellus 42A:343–365

    Article  Google Scholar 

  • Walker G, Bliss E (1932) World weather V. Meml R Meteorol Soc 134:193–210

    Google Scholar 

  • Wallace J, Gutzler D (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Weather Rev 109:784–812

    Article  Google Scholar 

  • Wang Y, Magnusdottir G (2012) The shift of the northern node of the NAO and cyclonic Rossby wave breaking. J Clim 25(22):7973–7982

    Article  Google Scholar 

  • Wang Y-H, Magnusdottir G, Stern H, Tian X, Yu Y (2012) Decadal variability of the NAO: introducing an augmented NAO index. Geophys Res Lett 39(21):L21702

    Google Scholar 

  • Woollings T, Hoskins B, Blackburn M, Berrisford P (2008) A new Rossby wave breaking interpretation of the North Atlantic Oscillation. J Atmos Sci 65:326–609

    Google Scholar 

  • Woollings T, Hannachi A, Hoskins B (2010) Variability of the North Atlantic eddy-driven jet stream. Q J R Meteorol Soc 136:856–868

    Article  Google Scholar 

  • Woollings T, Hannachi A, Hoskins B, Turner A (2010) A regime view of the North Atlantic Oscillation and its response to anthropogenic forcing. J Clim 23:1291–1307

    Article  Google Scholar 

Download references

Acknowledgments

This work has been funded by the Project of Strategic Interest NextData of the Italian Ministry of Education, University and Research (MIUR) (http://www.nextdataproject.it).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Davini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davini, P., Cagnazzo, C. On the misinterpretation of the North Atlantic Oscillation in CMIP5 models. Clim Dyn 43, 1497–1511 (2014). https://doi.org/10.1007/s00382-013-1970-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1970-y

Keywords

Navigation