Skip to main content

Mixed-phase clouds cause climate model biases in Arctic wintertime temperature inversions

Abstract

Temperature inversions are a common feature of the Arctic wintertime boundary layer. They have important impacts on both radiative and turbulent heat fluxes and partly determine local climate-change feedbacks. Understanding the spread in inversion strength modelled by current global climate models is therefore an important step in better understanding Arctic climate and its present and future changes. Here, we show how the formation of Arctic air masses leads to the emergence of a cloudy and a clear state of the Arctic winter boundary layer. In the cloudy state, cloud liquid water is present, little to no surface radiative cooling occurs and inversions are elevated and relatively weak, whereas surface radiative cooling leads to strong surface-based temperature inversions in the clear state. Comparing model output to observations, we find that most climate models lack a realistic representation of the cloudy state. An idealised single-column model experiment of the formation of Arctic air reveals that this bias is linked to inadequate mixed-phase cloud microphysics, whereas turbulent and conductive heat fluxes control the strength of inversions within the clear state.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Abbot DS, Tziperman E (2008) A high-latitude convective cloud feedback and equable climates. Q J Roy Met Soc 134(630):165–185. doi:10.1002/qj.211

    Article  Google Scholar 

  2. ACIA (2004) Impacts of a warming Arctic–Arctic climate impact assessment. Cambridge University Press, Cambridge

  3. Andreas EL, Guest PS, Persson POG, Fairall CW, Horst TW, Moritz RE, Semmer SR (2002) Near-surface water vapor over polar sea ice is always near ice saturation. J Geophys Res Oceans 107(C10):SHE 8–1–SHE 8–15. doi:10.1029/2000JC000411

    Article  Google Scholar 

  4. Barrett A (2012) Why can’t models simulate mixed-phase clouds correctly? PhD thesis, University of Reading

  5. Bergeron T (1935) On the physics of clouds and precipitation. In: Proceedings of 5th Assembly, UGGI, Lisbon, pp 156–178

  6. Bintanja R, Graversen R, Hazeleger W (2011) Arctic winter warming amplified by the thermal inversion and consequent low infrared cooling to space. Nat Geosci 4:758–761

    Article  Google Scholar 

  7. Cesana G, Kay J, Chepfer H, English J, de Boer G (2012) Ubiquitous low-level liquid-containing Arctic clouds: new observations and climate model constraints from CALIPSO-GOCCP. Geophys Res Lett 39(20):L20,804

    Google Scholar 

  8. Curry J (1983) On the formation of continental polar air. J Atmos Sci 40:2278–2292

    Article  Google Scholar 

  9. Curry J (1986) Interactions among turbulence, radiation and microphysics in Arctic stratus clouds. J Atmos Sci 43(1):90–106

    Article  Google Scholar 

  10. Cuxart J, Holtslag A, Beare R, Bazile E, Beljaars A, Cheng A, Conangla L, Ek M, Freedman F, Hamdi R et al (2006) Single-column model intercomparison for a stably stratified atmospheric boundary layer. Boundary-layer Met 118(2):273–303

    Article  Google Scholar 

  11. Devasthale A, Sedlar J, Tjernström M (2011) Characteristics of water-vapour inversions observed over the arctic by atmospheric infrared sounder (airs) and radiosondes. Atmos Chem Phys 11:9813–9823

    Article  Google Scholar 

  12. Donner L, Wyman B, Hemler R, Horowitz L, Ming Y, Zhao M, Golaz J, Ginoux P, Lin S, Schwarzkopf M et al (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J Clim 24(13):3484–3519

    Article  Google Scholar 

  13. Findeisen W (1938) Die kolloidmeteorologischen Vorgänge bei der Niederschlagsbildung. Meteor Z 55:121–133

    Google Scholar 

  14. Francis JA, Vavrus SJ (2012) Evidence linking arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett 39(6):L06801. doi:10.1029/2012GL051000

    Article  Google Scholar 

  15. Fridlind AM, Van Diedenhoven B, Ackerman AS, Avramov A, Mrowiec A, Morrison H, Zuidema P, Shupe MD (2012) A fire-ace/sheba case study of mixed-phase arctic boundary layer clouds: entrainment rate limitations on rapid primary ice nucleation processes. J Atmos Sci 69(1):365–389

    Article  Google Scholar 

  16. Gent P, Danabasoglu G, Donner L, Holland M, Hunke E, Jayne S, Lawrence D, Neale R, Rasch P, Vertenstein M et al (2011) The community climate system model version 4. J Clim 24(19):4973–4991

    Article  Google Scholar 

  17. Gettelman A, Walden V, Miloshevich L, Roth W, Halter B (2006) Relative humidity over Antarctica from radiosondes, satellites, and a general circulation model. J Geophys Res 111(D9):D09S13

    Google Scholar 

  18. Held I (1978) The tropospheric lapse rate and climatic sensitivity: experiments with a two-level atmospheric model. J Atmos Sci 35:2083–2098

    Article  Google Scholar 

  19. Honda M, Inoue J, Yamane S (2009) Influence of low arctic sea-ice minima on anomalously cold eurasian winters. Geophys Res Lett 36(8):L08,707. doi:10.1029/2008GL037079

    Article  Google Scholar 

  20. Hourdin F, Grandpeix J, Rio C, Bony S, Jam A, Cheruy F, Rochetin N, Fairhead L, Idelkadi A, Musat I et al (2012) LMDZ5B: the atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection. Clim Dyn. doi:10.1007/s00382-012-1343-y

  21. Jones P, New M, Parker D, Martin S, Rigor I (1999) Surface air temperature and its changes over the past 150 years. Rev Geophys 37(2):173–199

    Article  Google Scholar 

  22. Jungclaus J, Haak H, Latif M, Mikolajewicz U (2005) Arctic-North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J Clim 18(19):4013–4031

    Article  Google Scholar 

  23. Klein SA, McCoy RB, Morrison H, Ackerman AS, Avramov A, de~Boer G, Chen M, Cole JN, Del Genio AD, Falk M et al (2009) Intercomparison of model simulations of mixed-phase clouds observed during the arm mixed-phase arctic cloud experiment. i: Single-layer cloud. Quart J R Meteorol Soc 135(641):979–1002

    Article  Google Scholar 

  24. Lohmann U, Roeckner E (1996) Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model. Clim Dyn 12(8):557–572

    Article  Google Scholar 

  25. Manabe S, Wetherald R (1975) The effects of doubling the CO2 concentration on the climate of a general circulation model. J Atmos Sci 32:3–15

    Article  Google Scholar 

  26. Mauritsen T, Stevens B, Roeckner E, Crueger T, Esch M, Giorgetta M, Haak H, Jungclaus J, Klocke D, Matei D et al (2012) Tuning the climate of a global model. J Adv Model Earth Sys 4:M00A01. doi:10.1029/2012MS000154

    Google Scholar 

  27. Medeiros B, Deser C, Tomas R, Kay J (2011) Arctic inversion strength in climate models. J Clim 24:4733–4740

    Article  Google Scholar 

  28. Météo France (2009) ARPEGE-Climat V5.1 algorithmic documentation. Tech. Rep., Météo France/CNRM

  29. Morrison H, de Boer G, Feingold G, Harrington J, Shupe M, Sulia K (2012) Resilience of persistent Arctic mixed-phase clouds. Nat Geosci 4:11–17. doi:10.1038/ngeo1332

    Google Scholar 

  30. Overland J, Guest P (1991) The Arctic snow and air temperature budget over sea ice during winter. J Geophys Res 96(C3):4651–4662

    Article  Google Scholar 

  31. Pavelsky T, Boé J, Hall A, Fetzer E (2011) Atmospheric inversion strength over polar oceans in winter regulated by sea ice. Clim Dyn 36(5):945–955

    Article  Google Scholar 

  32. Persson P, Uttal T, Intrieri J, Fairall C, Andreas E, Guest P (1999) Observations of large thermal transitions during the arctic night from a suite of sensors at sheba. In: Third symposium on integrated observing systems America Meteorological Society, Dallas, TX

  33. Persson P, Fairall C, Andreas E, Guest P, Perovich D (2002) Measurements near the atmospheric surface flux group tower at SHEBA: near-surface conditions and surface energy budget. J Geophys Res 107(10.1029)

  34. Pithan F, Mauritsen T (2013) Statistical artifacts in ’Current GCMs’ unrealistic negative feedback in the Arctic’ by Boé et al. J Clim. doi:10.1175/JCLI-D-12-00331.1

  35. Rotstayn L, Ryan B, Katzfey J (2000) A scheme for calculation of the liquid fraction in mixed-phase stratiform clouds in large-scale models. Mon Wea Rev 128(4):1070–1088

    Article  Google Scholar 

  36. Schmidt G, Ruedy R, Hansen J, Aleinov I, Bell N, Bauer M, Bauer S, Cairns B, Canuto V, Cheng Y et al (2006) Present-day atmospheric simulations using GISS ModelE: comparison to in situ, satellite, and reanalysis data. J Clim 19(2):153–192

    Article  Google Scholar 

  37. Scoccimarro E, Gualdi S, Bellucci A, Sanna A, Giuseppe Fogli P, Manzini E, Vichi M, Oddo P, Navarra A (2011) Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model. J Climate 24(16):4368–4384

    Article  Google Scholar 

  38. Serreze M, Schnell R, Kahl J (1992) Low-level temperature inversions of the Eurasian Arctic and comparisons with Soviet drifting station data. J Clim 5(6):615–629

    Article  Google Scholar 

  39. Simmons A, Uppala S, Dee D, Kobayashi S (2007) ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newslett 110:25–35

    Google Scholar 

  40. Solomon A, Shupe MD, Persson POG, Morrison H, Yamaguchi T, Feingold G, Caldwell PM, deBoer G (2013) The sensitivity of springtime Arctic mixed-phase stratocumulus clouds to surface layer and cloud-top inversion layer moisture sources. J Atmos Sci (under review)

  41. Sorteberg A, Kattsov V, Walsh JE, Pavlova T (2007) The Arctic surface energy budget as simulated with the IPCC AR4 AOGCMs. Clim Dyn 29(2):131–156

    Article  Google Scholar 

  42. Sterk H, Steeneveld G, Holtslag A (2013) The role of snow-surface coupling, radiation, and turbulent mixing in modeling a stable boundary layer over arctic sea ice. J Geophys Res Atmos 118:1199–1217

    Article  Google Scholar 

  43. Stevens B, Crueger T, Esch M, Giorgetta M, Mauritsen T, Rast S, Schmidt H, Bader J, Block K, Brokopf R et al (2013) The atmospheric component of the MPI-M Earth System Model: ECHAM6. J Adv Model Earth Syst. doi:10.1002/jame.20015

  44. Stramler K, Del Genio A, Rossow W (2011) Synoptically driven Arctic winter states. J Clim 24(6):1747–1762

    Article  Google Scholar 

  45. Svensson G, Karlsson J (2011) On the Arctic wintertime climate in global climate models. J Clim 24(22):5757–5771

    Article  Google Scholar 

  46. Sverdrup H (1933) Meteorology, The Norwegian North Polar expedition with the ’Maud’ 1918–1925, scientific results, vol II. Geophysical Institute, Bergen

    Google Scholar 

  47. Taylor K, Stouffer R, Meehl G (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485

    Article  Google Scholar 

  48. Tjernström M (2012) The Arctic Ocean boundary layer: Interactions with the sea-ice surface and clouds. In: ECMWF GABLS workshop on diurnal cycles and the stable boundary layer, 7-10 November 2011, European Centre for Medium-Range Weather Forecasts

  49. Tjernström M, Graversen R (2009) The vertical structure of the lower Arctic troposphere analysed from observations and the ERA-40 reanalysis. Quart J R Meteorol Soc 135(639):431–443

    Article  Google Scholar 

  50. Turner JK, Gyakum JR (2011) The development of Arctic Air Masses in Northwest Canada and their behaviour in a warming climate. J Clim 24:4818–4633. doi:10.1175/2011JCLI3855.1

    Google Scholar 

  51. UCAR/NCAR/CISL/VETS (2012) The NCAR command language (Version 6.0.0) [Software]. doi:10.5065/D6WD3XH5

  52. Uppala S, Kållberg P, Simmons A, Andrae U, Bechtold V, Fiorino M, Gibson J, Haseler J, Hernandez A, Kelly G et al (2005) The ERA-40 re-analysis. Quart J R Meteorol Soc 131(612):2961–3012

    Article  Google Scholar 

  53. Volodin E, Dianskii N, Gusev A (2010) Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izvestiya Atmos Ocean Phys 46(4):414–431

    Article  Google Scholar 

  54. Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M, Yokohata T et al (2011) MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci Model Dev 4:845–872

    Article  Google Scholar 

  55. Wegener A (1911) Thermodynamik der Atmosphäre. JA Barth, Leipzig

    Google Scholar 

  56. Wexler H (1936) Cooling in the lower atmosphere and the structure of polar continental air. Mon Wea Rev 64:122–136

    Article  Google Scholar 

  57. Wu T, Yu R, Zhang F, Wang Z, Dong M, Wang L, Jin X, Chen D, Li L (2010) The Beijing Climate Center atmospheric general circulation model: description and its performance for the present-day climate. Clim Dyn 34(1):123–147

    Article  Google Scholar 

  58. Xie S, McCoy R, Klein S, Cederwall R, Wiscombe W, Jensen M, Johnson K, Clothiaux E, Gaustad K, Long C et al (2010) CLOUDS AND MORE: ARM climate modeling best estimate data. Bull Am Meteorol Soc 91(1):13–20

    Article  Google Scholar 

  59. Yukimoto S, Adachi Y, Hosaka M (2012) A new global climate model of the Meteorological Research Institute: MRI-CGCM3: model description and basic performance (special issue on recent development on climate models and future climate projections). J Meteorol Soc Jpn 90:23–64

    Article  Google Scholar 

  60. Zhang Y, Seidel D, Golaz J, Deser C, Tomas R (2011) Climatological characteristics of Arctic and Antarctic surface-based inversions. J Clim 24(19):5167–5186

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Tiina Kippeläinen for the inspiration to parts of this study, Anthony del Genio for information on the GISS model, Tongwen Wu for information on the BCC-CSM-1-1 model, Suvarchal Kumar Cheedela for developing and helping with the single-column version of ECHAM6 and Bjorn Stevens for helpful comments and discussions. Comments by Dirk Notz helped to improve the clarity of the manuscript. We are grateful to two anonymous reviewers for concise and helpful comments that enabled us to substantially improve the present paper. We thank the investigators involved in the collection and processing of SHEBA and ARM observations for making those datasets available. ERA40 and ERA-interim reanalyses data have been obtained from the ECMWF data server. The HadCRUT3v dataset has been provided by the Climatic Research Unit at the University of East Anglia. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP5, and we thank the climate modeling groups (listed in Table 1) for producing and making available their model output. Plots in this paper have been generated using NCL (UCAR/NCAR/CISL/VETS 2012) provided by NCAR. Brian Medeiros acknowledges support by the Office of Science (BER), U.S. Department of Energy. NCAR is sponsored by the National Science Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Felix Pithan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pithan, F., Medeiros, B. & Mauritsen, T. Mixed-phase clouds cause climate model biases in Arctic wintertime temperature inversions. Clim Dyn 43, 289–303 (2014). https://doi.org/10.1007/s00382-013-1964-9

Download citation

Keywords

  • Arctic
  • Boundary layer
  • Turbulence
  • Temperature inversion