Climate Dynamics

, Volume 42, Issue 7–8, pp 2079–2097 | Cite as

Uncertainties in the regional climate models simulations of South-Asian summer monsoon and climate change

  • F. S. SyedEmail author
  • Waheed Iqbal
  • Ahsan Ali Bukhari Syed
  • G. Rasul


The uncertainties in the regional climate models (RCMs) are evaluated by analyzing the driving global data of ERA40 reanalysis and ECHAM5 general circulation models, and the downscaled data of two RCMs (RegCM4 and PRECIS) over South-Asia for the present day simulation (1971–2000) of South-Asian summer monsoon. The differences between the observational datasets over South-Asia are also analyzed. The spatial and the quantitative analysis over the selected climatic regions of South-Asia for the mean climate and the inter-annual variability of temperature, precipitation and circulation show that the RCMs have systematic biases which are independent from different driving datasets and seems to come from the physics parameterization of the RCMs. The spatial gradients and topographically-induced structure of climate are generally captured and simulated values are within a few degrees of the observed values. The biases in the RCMs are not consistent with the biases in the driving fields and the models show similar spatial patterns after downscaling different global datasets. The annual cycle of temperature and rainfall is well simulated by the RCMs, however the RCMs are not able to capture the inter-annual variability. ECHAM5 is also downscaled for the future (2071–2100) climate under A1B emission scenario. The climate change signal is consistent between ECHAM5 and RCMs. There is warming over all the regions of South-Asia associated with increasing greenhouse gas concentrations and the increase in summer mean surface air temperature by the end of the century ranges from 2.5 to 5 °C, with maximum warming over north western parts of the domain and 30 % increase in rainfall over north eastern India, Bangladesh and Myanmar.


Regional climate model RegCM4 PRECIS South-Asia Monsoon Climate change Uncertainty 



Technical support of Burhan Ahmad and Farah Ikram is much appreciated. The authors acknowledge the RegCM4 group of the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy, for providing the model with LBC data and also the Hadley Centre of the United Kingdom for providing the PRECIS model with LBC data. Climatic Research Unit (CRU) of University of East Anglia and University of Delaware (UDEL) are also acknowledged for providing observed Air Temperature and Precipitation data. European Center for Medium Range Weather Forecast (ECMWF) and Max Plank Institute for Meteorology (MPI-M) are also acknowledged for providing ERA40 and ECHAM5 data respectively. We are thankful to the anonymous reviewers for the very useful comments and suggestions, which resulted in the lot of improvement in the paper.


  1. Acharya N, Kar SC, Mohanty UC, Kulkarni MA, Dash SK (2011) Performance of GCMs for seasonal prediction over India—a case study for 2009 monsoon. Theor Appl Climatol 105:505–520CrossRefGoogle Scholar
  2. Adam J, Lettenmaier DP (2003) Adjustment of global gridded precipitation for systematic bias. J Geophys Res 108:1–14. doi: 10.1029/2002JD002499 Google Scholar
  3. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin PA (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167CrossRefGoogle Scholar
  4. Akhtar M, Ahmad N, Booij MJ (2008) The impact of climate change on the water resources of Hindukush-Karakorum-Himalaya region under different glacier coverage scenarios. J Hydrol 355:148–163. doi: 10.1016/j.jhydrol.2008.03.015 CrossRefGoogle Scholar
  5. Almazroui M (2012) Dynamical downsca4ling of rainfall and temperature over the Arabian Peninsula using RegCM4. Clim Res 52:49–62CrossRefGoogle Scholar
  6. Annamalai H, Hamilton K, Sperber KR (2007) The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J Clim 20(6):1071–1092. doi: 10.1175/JCLI4035.1 CrossRefGoogle Scholar
  7. Anthes RA, Warner TT (1978) Development of hydrodynamic models suitable for air pollution and other mesometeorological studies. Mon Weather Rev 106:1045–1078CrossRefGoogle Scholar
  8. Arakawa A, Lamb VR (1977) Computational design and the basic dynamical processes of the UCLA general circulation Model. Methods in Computational Physics 17:173Google Scholar
  9. Ashfaq M, Shi Y, Tung WW, Trapp RJ, Gao X, Pal JS, Diffenbaugh NS (2009) Suppression of south Asian summer monsoon precipitation in the 21st century. Geophys Res Lett 36:L01704. doi: 10.1029/2008GL036500 CrossRefGoogle Scholar
  10. Bergant K, Belda M, Halenka T (2007) Systematic errors in the simulation of European climate (1961–2000) with RegCM3 driven by NCEP/NCAR reanalysis. Int J Climatol 27:455–472. doi: 10.1002/joc.1413 CrossRefGoogle Scholar
  11. Boberg F, Christensen JH (2012) Overestimation of Mediterranean summer temperature projections due to model deficiencies. Nat Clim Chang, 18, March 12, 2012. doi: 10.1038/NCLIMATE1454
  12. Bozkurt D, Sen OL (2011) Precipitation in the Anatolian Peninsula: sensitivity to increased SSTs in the surrounding seas. Clim Dyn 36(3–4):711–726. doi: 10.1007/s00382-009-0651-3 CrossRefGoogle Scholar
  13. Busuioc AH, Storch V, Schnur R (1999) Verification of GCM generated regional seasonal precipitation for current climate and of statistical downscaling estimates under changing climate conditions. J Clim 12:258–272CrossRefGoogle Scholar
  14. Cox PM, Betts RA, Bunton CB, Essery RLH, Rowntree PR, Smith J (1999) The impact of new land surface physics on the GCM sensitivity of climate and climate sensitivity. Clim Dyn 15:183–203CrossRefGoogle Scholar
  15. Dash SK, Shekhar MS, Singh GP (2006) Simulation of Indian summer monsoon circulation and rainfall using RegCM3. Theor Appl Climatol 86:161–172CrossRefGoogle Scholar
  16. Dickinson RE, Henderson-Sellers A, Kennedy P (1993) Bio-sphere–atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model. Tech Rep, National Center for Atmospheric Research Tech Note NCAR. TN-387+STR, NCAR, Boulder, COGoogle Scholar
  17. Dobler A, Ahrens B (2011) Four climate change scenarios for the Indian summer monsoon by the regional climate model COSMO-CLM. J Geophys Res 116(D24104). doi: 10.1029/2011JD016329
  18. Duffy PB, Arritt RW, Coquard J, Gutowski W, Han J, Iorio J, Kim J, Leung LR, Roads J, Zeledon E (2006) Simulations of present and future climates in the western U.S. with four nested regional climate models. J Clim 19:873–895CrossRefGoogle Scholar
  19. Essery RLH, Best MJ, Betts RA, Cox PM, Taylor CM (2003) Explicit representation of subgrid heterogeneity in a GCM land surface scheme. J Hydrometeorol 4:530–543CrossRefGoogle Scholar
  20. Feser F (2006) Enhanced detectability of added value in limited-area model results separated into different spatial scales. Mon Weather Rev 134:2180–2190CrossRefGoogle Scholar
  21. Feser F, Rockel B, Storch H, Winterfeldt J, Zahn M (2011) Regional climate models add value to global model data: a review and selected examples. Bull Am Meteorol Soc 92:1181–1192. doi: 10.1175/2011BAMS3061.1 Google Scholar
  22. Foley AM (2010) Uncertainty in regional climate modelling: a review. Prog Phys Geogr 34:647–670. doi: 10.1177/0309133310375654 CrossRefGoogle Scholar
  23. Frei C, Schöll R, Fukutome S, Schmidli J, Vidale PL (2006) Future change of precipitation extremes in Europe: intercomparison of scenarios from regional climate models. J Geophys Res 11:D06105Google Scholar
  24. Gao X, Shi Y, Zhang D, Giorgi F (2012) A high resolution climate change simulation of the 21st century over China by RegCM3. Chin Sci Bull 57:1188–1195. doi: 10.007/s11434-011-4935-8 CrossRefGoogle Scholar
  25. Giorgi F, Anyah RO (2012) Evolution of regional climate modeling: the road towards RegCM4. Clim Res 52:3–6CrossRefGoogle Scholar
  26. Giorgi F, Francisco R (2000) Evaluating uncertainties in the prediction of regional climate. Geophys Res Lett 27(9):1295–1298CrossRefGoogle Scholar
  27. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104CrossRefGoogle Scholar
  28. Giorgi F, Bates GT, Nieman S (1993a) The multi-year surface climatology of a regional atmospheric model over the Western United States. J Clim 6:75–95CrossRefGoogle Scholar
  29. Giorgi F, Marinucci MR, Bates GT (1993b) Development of a second generation regional climate model (RegCM2). Part I: boundary layer and radiative transfer processes. Mon Weather Rev 121:2794–2813CrossRefGoogle Scholar
  30. Giorgi F, Huang Y, Nishizawa K, Fu C (1999) A seasonal cycle simulation over eastern Asia and its sensitivity to radiative transfer and surface processes. J Geophys Res 104:6403–6423CrossRefGoogle Scholar
  31. Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168CrossRefGoogle Scholar
  32. Gregory D, Allen S (1991) The effect of convective scale downdrafts upon NWP and climate simulations. In: Preprints, 9th conference on numerical weather prediction, Denver. Amer Meteor Soc, pp 122–123Google Scholar
  33. Gregory D, Kershaw R, Inness PM (1997) Parametrization of momentum transport by convection. II: tests in single-column and general circulation models. Q J R Meteor Soc 123:1153–1183CrossRefGoogle Scholar
  34. Gregory D, Rowntree P R (1990) A mass flux convection scheme with representation of cloud enscmble characteristics and stability dependent closure. Mon Weather Rev 118:1483–1506CrossRefGoogle Scholar
  35. Gregory PJ, Ingram JSI, Anderson R, Betts RA, Brovkin V, Chase TN, Grace PR, Gray AJ, Hamilton N, Hardy TB, Howden SM, Jenkins A, Meybeck M, Olsson M, Ortiz-Montasterio I, Palm CA, Payn TW, Rummukainen M, Schulze RE, Thiem M, Valentin C, Wikinson MJ (2002) Environmental consequences of alternative practices for intensifying crop production. Agric Ecosyst Environ 88:279–290CrossRefGoogle Scholar
  36. Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787CrossRefGoogle Scholar
  37. Han J, Roads J (2004) U.S. climate sensitivity simulated with the NCEP regional spectral model. Clim Change 62:115–154. doi: 10.1023/B:CLIM.0000013675.66917.15 CrossRefGoogle Scholar
  38. Henderson-Sellers A (1993) An antipodean climate of uncertainty. Clim Change 25:203–224CrossRefGoogle Scholar
  39. Holtslag A, de Bruijn E, Pan HL (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118:1561–1575CrossRefGoogle Scholar
  40. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D (eds) (2001) Climate change 2001: the scientific basis: contributions of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  41. Hu ZZ, Wu Z (2004) The intensification and shift of the annual North Atlantic Oscillation in a global warming scenario simulation. Tellus Ser A 56:112–124CrossRefGoogle Scholar
  42. IPCC (2007a) Climate Change 2007: the Physical Science Basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  43. IPCC (2007b) Climate change 2007, impacts, adaptation and vulnerability. In: Parry ML et al (eds) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  44. Islam AKMS, Bhaskaran B, Arifin BMS, Murshed SB, Mukherjee N, Hossain BMTA (2011) Domain size experiment using PRECIS regional climate model for Bangladesh. In: Proceedings of the 3rd international conference on water and flood management, vol 2, Dhaka, pp 891–898Google Scholar
  45. Islam N (2009) Understanding the rainfall climatology and detection of extreme weather events in SAARC region: part II-Bangladesh, vol 29. SMRC, p 36Google Scholar
  46. Islam MN, Rafiuddin M, Ahmed AU, Kolli RK (2008) Calibration of PRECIS in employing future scenarios in Bangladesh. Int J Climatol 28:617–628CrossRefGoogle Scholar
  47. Islam S, Rehman N, Sheikh MM (2009) Future change in the frequency of warm and cold spells durations over Pakistan simulated by the PRECIS regional climate model. Clim Change 94:35–45. doi: 10.1007/s10584-009-9557-7 CrossRefGoogle Scholar
  48. Jones RN (2000) Managing uncertainty in climate change projections—issues for impact assessment: an editorial comment. Clim Change 45:403–419CrossRefGoogle Scholar
  49. Jones RG, Noguer M, Hassell DC, Hudson D, Wilson SS, Jenkins GJ, Mitchell JFB (2004) Generating high resolution climate change scenarios using PRECIS. Met Office Hadley Centre, ExeterGoogle Scholar
  50. Kang I-S, Shukla J (2005) Dynamical seasonal prediction and predictability of monsoon. In: Wang B (ed) The Asian monsoon. Praxis Publishing Ltd, Chichester, pp 585–612Google Scholar
  51. Kang I-S, Lee J, Park CK (2004) Potential predictability of summer mean precipitation in a dynamical seasonal prediction system with systematic error correction. J Clim 17:834–844CrossRefGoogle Scholar
  52. Kar SC, Acharya N, Mohanty UC, Kulkarni MA (2011) Skill of monthly rainfall forecasts over India using multi-model ensemble schemes. Int J Climatol. doi: 10.1002/joc.2334 Google Scholar
  53. Kiehl JT, Hack JJ, Bonan GB, Boville BA, Briegleb BP, Williamson DL, Rasch PJ (1996) Description of the NCAR Community Climate Model (CCM3). NCAR Technical Note NCAR/TN-420 + STR, 143 pGoogle Scholar
  54. Kitoh A, Kusunoki S (2009) East Asian summer monsoon simulation by a 20-km mesh AGCM. Clim Dyn. doi: 10.1007/s00382-007-0285-2 Google Scholar
  55. Krishnamurti TN, Stefanova L, Chakraborty A, Kumar TSVV, Cocke S, Bachiochi D, Mackey B (2002) Seasonal forecasts of precipitation anomalies for North American and Asian monsoons. J Meteorol Soc Jpn 80:1415–1426CrossRefGoogle Scholar
  56. Krishnamurti TN, Mitra AK, Yun W-T, Kumar TSVV (2006) Seasonal climate forecasts of the Asian monsoon using multiple coupled models. Tellus 58A:487–507Google Scholar
  57. Krishnan R, Sabin TP, Ayantika DC, Kitoh A, Sugi M, Murakami H, Turner AG, Slingo JM, Rajendran K (2012) Will the South Asian monsoon overturning circulation stabilize any further? Clim Dyn. doi: 10.1007/s00382-012-1317-0 Google Scholar
  58. Kumar RK, Sahai AK, Krishna KK, Patwardhan SK, Mishra PK, Revadekar JV, Kamala K, Pant GB (2006) High-resolution climate change scenarios for India for the 21st century. Curr Sci 90:334–345Google Scholar
  59. Liu S, Liang X-Z, Gao W, He Y, Ling T (2011) Regional climate model simulations of the 1998 summer China flood: dependence on initial and lateral boundary conditions. Open Atmos Sci J 5:96–105CrossRefGoogle Scholar
  60. Loveland TR, Reed BC, Brown JF, Ohlen DO, Zhu Z, Yang L, Merchant JW (2000) Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int J Remote Sens 21(6–7):1303–1365CrossRefGoogle Scholar
  61. Martinez-Castro D, Porfirio da Rocha R, Bezanilla-Morlot A, Alvarez-Escudero L, Reyes-Fernandez JP, Silva-Vidal Y, Arritt RW (2006) Sensitivity studies of the RegCM3 simulation of summer precipitation, temperature and local wind field in the Caribbean Region. Theor Appl Climatol 86:5–22CrossRefGoogle Scholar
  62. Messager C, Gallee H, Brasseur O (2004) Precipitation sensitivity to regional SST in a regional climate simulation during the West African monsoon for two dry years. Clim Dyn 22:249–266. doi: 10.1007/s00382-003-0381-x CrossRefGoogle Scholar
  63. Mitchell TD, Hulme M (1999) Predicting regional climate change: living with uncertainty. Prog Phys Geogr 23:57–78CrossRefGoogle Scholar
  64. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high resolution grids. Int J Climatol 25:693–712CrossRefGoogle Scholar
  65. Mizuta R, Yoshimura H, Murakami H, Matsueda M, Endo H, Ose T, Kamiguchi K, Hosaka M, Sugi M, Yukimoto S, Kusunoki S, Kitoh A (2012) Climate simulations using MRI-AGCM3.2 with 20-km grid. J Meteorol Soc Jpn 90A:233–258. doi: 10.2151/jmsj.2012-A12 CrossRefGoogle Scholar
  66. Onol B, Semazzi FHM (2009) Regionalization of climate change simulations over the eastern Mediterranean. J Clim 22:1944–1961CrossRefGoogle Scholar
  67. Paeth H, Manning B (2012) On the added value of regional climate modeling in climate change assessment. Clim Dyn doi: 10.1007/s00382-012-1517-7 Google Scholar
  68. Pal JS, Small E, Eltahir E (2000) Simulation of regional-scale water and energy budgets: representation of Subgrid cloud and precipitation processes within RegCM. J Geophys Res 105:29579–29594CrossRefGoogle Scholar
  69. Pal JS, Giorgi F, Bi X (2004) Consistency of recent European summer precipitation trends and extremes with future regional climate projections. Geophys Res Lett 31:L13202CrossRefGoogle Scholar
  70. Rajendran K, Kitoh A, Srinivasan J, Mizuta R, Krishnan R (2012) Monsoon circulation interaction with Western Ghats orography under changing climate—projection by a 20-km mesh AGCM. Theoret Appl Climatol. doi: 10.1007/s00704-012-0690-2 Google Scholar
  71. Rao YP, Ramamurti KS (1968) Climatology of India and neighbourhood, F.M.U. Rep No I-2, India Meteorological DepartmentGoogle Scholar
  72. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(14):4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  73. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part I: model description, vol 349. Max Planck Institute for Meteorology Report, p 127Google Scholar
  74. Russell GL, Miller JR, Rind D, Ruedy RA, Schmidt GA, Sheth S (2000) Comparison of model and observed regional temperature changes during the past 40 years. J Geophys Res 105:14891–14898. doi: 10.1029/2000JD900156 CrossRefGoogle Scholar
  75. Sabin TP, Krishnan R, Ghattas J, Denvil S, Dufresne J-L, Hourdin F, Pascal T (2013) High resolution simulation of the South Asian monsoon using a variable resolution global climate model. Clim Dyn. doi: 10.1007/s00382-012-1658-8 Google Scholar
  76. Sen OL, Wang Y, Wang B (2004a) Impact of Indochina deforestation on the East-Asian summer monsoon. J Clim 17:1366–1380CrossRefGoogle Scholar
  77. Sen OL, Wang B, Wang Y (2004b) Regreening the desertification lands in northern China: implications from a regional climate model experiment. J Meteorol Soc Jpn 82(6):1599–1628CrossRefGoogle Scholar
  78. Seth A, Rauscher SA, Camargo SJ, Qian JH, Pal JS (2007) REGCM3 regional climatologies for South America using reanalysis and ECHAM global model driving fields. Clim Dyn 28:461–480. doi: 10.1007/s00382-006-0191-z CrossRefGoogle Scholar
  79. Sylla MB, Coppola E, Mariotti L, Giorgi F, Ruti PM, Dell’Aquila A, Bi X (2010) Multiyear simulation of the African climate using a regional climate model (RegCM3) with the high resolution ERA-interim reanalysis. Clim Dyn 35:231–247CrossRefGoogle Scholar
  80. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(7):7183–7192. doi: 10.1029/2000JD900719 CrossRefGoogle Scholar
  81. Taylor MA, Centella A, Charlery J, Borrajero I, Bezanilla A, Campbell J, Rivero R, Stephenson TS, Whyte F, Watson R (2007) Glimpses of the future: a briefing from the PRECIS Caribbean Climate Change Project. Caribbean Community Climate Change Centre, Belmopan, p 24Google Scholar
  82. Uppala SM, Kållberg PW, Simmons AJ, Andrae U, da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi: 10.1256/qj.04.176 CrossRefGoogle Scholar
  83. Vidale PL, Lüthi D, Frei C, Seneviratne SI, Schär C (2003) Predictability and uncertainty in a regional climate model. J Geophys Res 108(18):4586. doi: 10.1029/2002JD002810 CrossRefGoogle Scholar
  84. Wang GL (2005) Agricultural drought in a future climate: results from fifteen global climate models participating in the Inter-governmental panel for climate change’s 4th assessment. Clim Dyn 25. doi: 10.1007/s00382-005-0057-9
  85. Wang B (2006) The Asian monsoon. Springer/Praxis Publishing, New York, pp 134–139Google Scholar
  86. Wang YQ, Leung LR, McGregor JL, Lee DK, Wang WC, Ding YH, Kimura F (2004) Regional climate modeling: progress, challenges and prospects. J Meteorol Soc Jpn 82:1599–1628CrossRefGoogle Scholar
  87. Wang B, Ding Q, Fu X, Kang I-S, Jin K, Shukla J, Doblas-Reyes F (2005) Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys Res Lett 32:L15711. doi: 101029/2005Gl022734 CrossRefGoogle Scholar
  88. Willmott CJ, Matsuura K (1998) Global air temperature and precipitation: regridded monthly and annual climatologies (Version 2.01). Center for Climatic Research, Department of Geography, University of Delaware, Newark, DE (data available at
  89. Zeng X, Zhao M, Dickinson RE (1998) Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Clim 11:2628–2644CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • F. S. Syed
    • 1
    • 2
    Email author
  • Waheed Iqbal
    • 2
  • Ahsan Ali Bukhari Syed
    • 2
  • G. Rasul
    • 2
  1. 1.Centre for Climate Research and Development (CCRD), Department of MeteorologyCOMSATS Institute of Information TechnologyIslamabadPakistan
  2. 2.Research and Development DivisionPakistan Meteorological DepartmentIslamabadPakistan

Personalised recommendations