Advertisement

Climate Dynamics

, Volume 43, Issue 1–2, pp 447–467 | Cite as

A new atmospheric proxy for sea level variability in the southeastern North Sea: observations and future ensemble projections

  • Sönke Dangendorf
  • Thomas Wahl
  • Enno Nilson
  • Birgit Klein
  • Jürgen Jensen
Article

Abstract

Atmosphere–ocean interactions are known to dominate seasonal to decadal sea level variability in the southeastern North Sea. In this study an atmospheric proxy for the observed sea level variability in the German Bight is introduced. Monthly mean sea level (MSL) time series from 13 tide gauges located in the German Bight and one virtual station record are evaluated in comparison to sea level pressure fields over the North Atlantic and Europe. A quasi-linear relationship between MSL in the German Bight and sea level pressure over Scandinavia and the Iberian Peninsula is found. This relationship is used (1) to evaluate the atmospheric contribution to MSL variability in hindcast experiments over the period from 1871–2008 with data from the twentieth century reanalysis v2 (20CRv2), (2) to isolate the high frequency meteorological variability of MSL from longer-term changes, (3) to derive ensemble projections of the atmospheric contribution to MSL until 2100 with eight different coupled global atmosphere–ocean models (AOGCM’s) under the A1B emission scenario and (4) two additional projections for one AOGCM (ECHAM5/MPI-OM) under the B1 and A2 emission scenarios. The hindcast produces a reasonable good reconstruction explaining approximately 80 % of the observed MSL variability over the period from 1871 to 2008. Observational features such as the divergent seasonal trend development in the second half of the twentieth century, i.e. larger trends from January to March compared to the rest of the year, and regional variations along the German North Sea coastline in trends and variability are well described. For the period from 1961 to 1990 the Kolmogorov-Smirnow test is used to evaluate the ability of the eight AOGCMs to reproduce the observed statistical properties of MSL variations. All models are able to reproduce the statistical distribution of atmospheric MSL. For the target year 2100 the models point to a slight increase in the atmospheric component of MSL with generally larger changes during winter months (October–March). Largest MSL changes in the order of ~5–6 cm are found for the high emission scenario A2, whereas the moderate B1 and intermediate A1B scenarios lead to moderate changes in the order of ~3 cm. All models point to an increasing atmospheric contribution to MSL in the German Bight, but the uncertainties are considerable, i.e. model and scenario uncertainties are in the same order of magnitude.

Keywords

German Bight Mean sea level Sea level variability Atmospheric forcing Climate change 

Notes

Acknowledgments

The present study was performed within the KLIWAS research program, which is financed by the German Ministry of Transport, Building and Urban Development. We are further grateful to the Waterways and Shipping Administration of the Federal Government (WSV) for providing us the tide gauge data. Furthermore, we acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modeling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset. Support of this dataset is provided by the Office of Science, U.S. Department of Energy. The ENSEMBLES data used in this work was funded by the EU FP6 Integrated Project ENSEMBLES (Contract number 505539) whose support is gratefully acknowledged. We would particular like to thank Thomas Pohlmann for the fruitful discussions. Two anonymous reviewers are greatly acknowledged for their valuable comments that helped to improve the study.

References

  1. Albrecht F, Weisse R (2012) Pressure effects on past regional sea level trends and variability in the German Bight. Ocean Dyn 62:1169–1186. doi: 10.1007/s10236-012-0557 CrossRefGoogle Scholar
  2. Albrecht F, Wahl T, Jensen J, Weisse R (2011) Determining sea level change in the German Bight. Ocean Dyn 61:2037–2050. doi: 10.1007/s10236-011-0462-z CrossRefGoogle Scholar
  3. Becker GA, Dick S, Dippner JW (1992) Hydrography of the German Bight. Mar Ecol Prog Ser 91:9–18CrossRefGoogle Scholar
  4. Bromirski PD, Miller AJ, Flick RE, Auad G (2011) Dynamical suppression of sea level rise along the Pacific coast of North America: indications for imminent acceleration. J Geophys Res 116:C07005. doi: 10.1029/2010JC006759 Google Scholar
  5. Calafat FM, Chambers DP, Tsimplis MN (2012) Mechanism of decadal sea level variability in the eastern North Atlantic and the Mediterranean Sea. J Geophys Res 117:C09022. doi: 10.1029/2012JC008285 Google Scholar
  6. Calafat FM, Chambers DP, Tsimplis MN (2013) Inter-annual to decadal sea-level variability in the coastal zones of the Norwegian and Siberian Seas: the role of atmospheric forcing. J Geophys Res 118:1287–1301CrossRefGoogle Scholar
  7. Compo GB, Whitaker JS, Sardeshmukh PD et al (2011) The twentieth century reanalysis project. Q J R Meterol Soc 137:1–28. doi: 10.1002/qj.776 CrossRefGoogle Scholar
  8. Dangendorf S, Wahl T, Hein H, Jensen J, Mai S, Mudersbach C (2012) Mean sea level variability and influence of the North Atlantic oscillation on long-term trends in the German Bight. Water 4:170–195. doi: 10.3390/w4010170 CrossRefGoogle Scholar
  9. Dangendorf S, Mudersbach C, Wahl T, Jensen J (2013a) Characteristics of intra-, inter-annual and decadal sea-level variability and the role of meteorological forcing: the long record of Cuxhaven. Ocean Dyn. 63(2–3): 209–224. doi: 10.1007/s10236-013-0598-0 CrossRefGoogle Scholar
  10. Dangendorf S, Mudersbach C, Wahl T, Jensen J (2013b) The seasonal mean sea level cycle in the southeastern North Sea. In: Conley DC, Masselink G, Russell PE, O’Hare TJ (eds) Proceedings 12th international coastal symposium (Plymouth, England), J Coastal Res, Special Issue No. 65, pp. xxx–xxx, ISSN 0749-0208Google Scholar
  11. De Winter RC, Sterl A, de Vries JW, Weber SL, Ruessink G (2012) The effect of climate change on extreme wave heights in front of the Dutch coast. Ocean Dyn 62(8):1139–1152CrossRefGoogle Scholar
  12. De Winter RC, Sterl A, Ruessink BG (2013) Wind extremes in the North Sea basin under climate change: an ensemble study of 12 CMIP5 GCMs. J Geophys Res 118:1–12Google Scholar
  13. Dietrich G (1954) Ozeanographisch-meteorologische Einflüsse auf Wasserstandsänderungen des Meeres am Fallbeispiel der Pegelbeobachtungen von Esbjerg. Die Küste 2:130–156Google Scholar
  14. Donat MG, Leckebusch GC, Pinto JG, Ulbrich U (2010) European storminess and associated circulation weather types: future changes deduced from a multi-model ensemble of GCM simulations. Clim Res 42:24–43CrossRefGoogle Scholar
  15. Firing YL, Merrifield MA (2004) Extreme sea level events at Hawaii: influences of mesoscale eddies. Geophys Res Lett 31:L24306CrossRefGoogle Scholar
  16. Francombe LM, Dijkstra HM (2009) Coherent multi-decadal variability in North Atlantic sea level. Geophys Res Lett 36:L15604Google Scholar
  17. Furevik T, Bentsen M, Drange H, Kindem IKT, Kvamtso NG, Sorteberg A (2003) Description and evaluation of the Bergen climate model: arpege coupled with MICOM. Clim Dyn 21:27–51CrossRefGoogle Scholar
  18. Gomis D, Ruiz S, Sotillo MG, Alvarez-Fanjul E, Terradas J (2008) Low frequency Mediterranean sea level variability: the contribution of atmospheric pressure and wind. Global Planet Change 63(2–3):215–229CrossRefGoogle Scholar
  19. Gordon C, Cooper C, Senior CA, Banks H et al (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168CrossRefGoogle Scholar
  20. Heyen H, Zorita E, von Storch H (1996) Statistical downscaling of monthly mean North Atlanzic air-pressure to sea level anomalies in the Baltic Sea. Tellus A 48:312–323CrossRefGoogle Scholar
  21. Huebener H, Cubasch U, Langematz U, Spangehl T, Niehörster F, Fast I, Kunze M (2007) Ensemble climate simulations using a fully coupled ocean-troposphere-stratosphere GCM. Phil Trans R Soc A 365:2089–2101CrossRefGoogle Scholar
  22. Huenicke B, Luterbacher J, Pauling A, Zorita E (2008) Regional differences in winter sea level variations in the Baltic Sea for the past 200 years. Tellus A 60:384–393CrossRefGoogle Scholar
  23. Hurrel JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic oscillation. In: Hurrel JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climate significance and environmental impact. Geophysical Monograph series, vol 134, pp 1–35Google Scholar
  24. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  25. Jacob D, Göttel H, Kotlarski S, Lorenz P, Sieck K (2008) Klimaauswirkungen und Anpassung in Deutschland. Phase 1: erstellung regionaler Klimaszenarien für Deutschland. UBA Forschungsbericht 204:41–138, http://www.umweltdaten.de/publikationen/fpdf-l/3513.pdf
  26. Jensen J, Mudersbach C, Blasi C (2003) Hydrological changes in tidal estuaries due to natural and anthropogenic effects. In: Özhan (ed) Proceedings of the sixth international conference on the Mediterranean coastal environment, MEDCOAST 03, pp 2257–2266Google Scholar
  27. Jevrejeva S, Moore JC, Woodworth PL, Grinsted A (2005) Influence of large scale atmospheric circulation on European sea level results based on the wavelet transform method. Tellus A57:183–193CrossRefGoogle Scholar
  28. Jevrejeva S, Moore JC, Grinsted A, Woodworth PL (2008) Recent global sea level acceleration started over 200 years ago? Geophys Res Lett 35:L08715. doi: 10.1029/2008GL033611 CrossRefGoogle Scholar
  29. Johns TC, Durmann CF, Banks HT, Roberts MJ et al (2006) The new Hadley Centre climate model (HadGEM1): evaluation and coupled simulations. J Clim 19:1327–1353CrossRefGoogle Scholar
  30. Jorda G, Gomis D, Alvarez-Fanjul E, Somot S (2012) Atmospheric contribution to Mediterranean and nearby Atlantic sea level variability under different climate change scenarios. Global Planet Chang 80–81:198–214CrossRefGoogle Scholar
  31. Jungclaus JH, Keenlyside H, Botzet M, Haak H et al (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Clim 19:3952–3972CrossRefGoogle Scholar
  32. Kalnay E, Kanamitsu M, Kistler W et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77:437–471CrossRefGoogle Scholar
  33. Katsman CA, Hazeleger W, Drijfhout SS, van Oldenborgh GJ, Burger GJH (2008) Climate scenarios for sea level rise for the northeast Atlantic Ocean: a study including the effects of ocean dynamics and gravity changes induced by ice melt. Climatic Change 91:351–374CrossRefGoogle Scholar
  34. Katsman CA, Sterl A, Beersma JJ et al (2011) Exploring high-end scenarios for local sea level rise to develop flood protection strategies for a low-lying delta-The Netherlands as an example. Clim Change. doi: 10.1007/s10584-011-0037-5 Google Scholar
  35. Knutti R, Sedlacek J (2012) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Chang. doi: 10.1038/nclimate1716 Google Scholar
  36. Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010) Challenges in combining projections from multiple models. J Clim 23:2739–2758CrossRefGoogle Scholar
  37. Krahe P, Nilson E, Gelhardt U, Lang J (2011) Auswertungen ausgewählter globaler Klimamodelle hinsichtlich atmosphärischer Zirkulationsbedingungen im nordatlantisch-mitteleuropäischen Sektor. BfG-1682Google Scholar
  38. Krüger O, Schenk F, Feser F, Weisse R (2012) Inconsistencies between long-term trends in storminess derived from the 20CR reanalysis and observations. J Clim. doi: 10.1175/JCLI-D-12-00309.1 Google Scholar
  39. Langenberg H, Pfizenmayer A, von Storch H, Sündermann J (1999) Storm-related sea level variations along the North Sea coast: natural variability and anthropogenic change. Cont Shelf Res 19(6):821–842CrossRefGoogle Scholar
  40. Leckebusch GC, Kapala A, Mächel H, Pinto JG, Reyers M (2006) Indizes der Nordatlantischen und Arktischen Oszillation. Promet 34(3–4):95–100Google Scholar
  41. Lowe JA, Howard TP, Pardaens A, Tinker J, Holt J, Wakelin S, Milne G, Leake J, Wolf J, Horsburgh K, Reeder T, Jenkins G, Ridley J, Dye S, Bradley S (2009) UK Climate Projections science report: Marine and coastal projections. Met Office Hadley Centre, ExeterGoogle Scholar
  42. Marcos M, Tsimplis MN (2007) Forcing of coastal sea level rise patterns in the North Atlantic and Mediterranean Sea. Geophys Res Lett 34:L18604. doi: 10.1029/2007GL030641 CrossRefGoogle Scholar
  43. Marti O, Braconnot P, Bellier J, Benshila R et al (2005) The new IPSL climate system model: IPSL-CM4. Note du Pole de Modelisation, 26Google Scholar
  44. Meehl GA et al (2007) Global climate projections. In: Solomon S, Quin D, Manning M et al (eds) Climate Change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 433–497Google Scholar
  45. Merrifield MA, Maltrud ME (2011) Regional sea level trends due to a Pacific trade wind intensification. Geophys Res Lett 38:L21605. doi: 10.1029/2011GL049576 CrossRefGoogle Scholar
  46. Miller L, Douglas BC (2007) Gyre-scale atmospheric pressure variations and their relation to 19th and twentieth century sea level rise. Geophys Res Lett 34:L16602Google Scholar
  47. Nakicenovic RJ, Alcamo J, Davis G et al (2000) Emission scenarios. A special report of Working Group III of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  48. Nerem RS, Chambers DP, Choe C, Mitchum GT (2010) Estimating mean sea level change from TOPEX and Jason altimeter missions. Mar Geol 33:435–446Google Scholar
  49. Nicholls RJ, Marinova N, Lowe JA, Brown S, Vellinga P, de Gusmao D, Hinkel J, Tol RSJ (2011) Sea level rise and its possible impacts given a ‘beyond 4°C world’ in the twenty-first century. Phil Trans R Soc A 369:161–181CrossRefGoogle Scholar
  50. Niehörster F, Fast I, Huebener H, Cubasch (2008) The stream one ENSEMBLE projections of future climate change. ENSEMBLES Technical Report 3. Available online: http://ensembles-eu.metoffice.com/tech_reports/ETR_3_vn0.pdf
  51. Nilson E, Perrin C, Beersma J, Carambia M, Krahe P, de Keizer O, Görgen K (2010) Evaluation of data and processing procedures. In: Görgen K, Beersma J, Brahmer G, Buiteveld H, Carambia M, de Keizer O, Krahe P, Nilson E, Lammersen R, Perrin C, Volken D (2010) Assessment of climate-change impacts on discharge in the Rhine. River Basin: results of the RheinBlick2050 Project. CHR Report No. I-23, pp. 51–95. Download at: http://www.chr-khr.org/files/CHR_I-23.pdf
  52. Osborn TJ (2004) Simulating the winter North Atlantic Oscillation: the roles of internal variability and greenhouse gas forcing. Clim Dyn 22(6–7):605–623Google Scholar
  53. Palmer T, Shutts G, Hagedorn R, Doblas-Reyes F, Jung T, Leutbecher M (2005) Representing model uncertainty in weather and climate prediction. Annu Rev Earth Plent Sci 33:163–193CrossRefGoogle Scholar
  54. Pinto JG, Ulbrich U, Leckebusch GC, Spangehl T, Reyears M, Zacharias S (2007) Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPIOM1 GCM. Clim Dyn 29:195–210CrossRefGoogle Scholar
  55. Pinto JG, Zacharias S, Fink AH, Leckebusch GC, Ulbrich U (2009) Factors contributing to the development of extreme North Atlantic cyclones and their relationship with the NAO. Clim Dyn 32:711–737CrossRefGoogle Scholar
  56. Ponte RM (2006) Low-frequency sea level variability and the inverted barometer effect. J Atmos Oceanic Technol 23:619–629CrossRefGoogle Scholar
  57. Proshutinsky A, Ashik I, Häkkinen S, Hunke E, Krishfield R, Maltrud M, Maslowski W, Zhang J (2007) Sea level variability in the Arctic Ocean from AOMIP models. J Geophys Res 112:C04S08Google Scholar
  58. Rahmstorf S, Perrette M, Vermeer M (2012) Testing the robustness of semi empirical sea level projections. Clim Dyn 39:861–875CrossRefGoogle Scholar
  59. Salas-Melia D, Chauvin F, Deque M, Douville H, Gueremy J, Marquet P, Planton S, Roger J, Tyteca S (2005) Decription and validation of the CNRM-CM3 global coupled model. CNRM working note 103Google Scholar
  60. Santer BD, Wigley TML, Boyle JS, Gaffen DJ, Hnilo JJ, Nychka D, Parker DE, Taylor KE (2000) Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J Geophys Res 105:7337–7356CrossRefGoogle Scholar
  61. Selten FM, Branstator GW, Dijkstra HA, Kliphuis M (2004) Tropical originals for recent and future northern hemisphere climate change. Geophys Res Lett 31:L21205. doi: 10.1029/2004GL020739 CrossRefGoogle Scholar
  62. Siegismund F, Schrum C (2001) Decadal changes in the wind forcing over the North Sea. Clim Res 18:39–45CrossRefGoogle Scholar
  63. Slangen ABA, Katsman CA, van de Wal RSW, Vermeersen LLA, Riva REM (2011) Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios. Clim Dyn 38:1191–1209. doi: 10.1007/s00382-011-1057-6 CrossRefGoogle Scholar
  64. Somot S, Sevault F, Dequet M (2006) Transient climate change scenario simulation oft he Mediterranean Sea fort he twenty-first century using a high-resolution ocean circulation model. Clim Dyn 27:851–879CrossRefGoogle Scholar
  65. Stammer D, Hüttemann S (2008) Response of regional sea level to atmospheric pressure loading in a climate change scenario. J Climate 21:2093–2101CrossRefGoogle Scholar
  66. Stephenson DB, Pavan V, Collins M, Junge MM, Quadrelli R (2006) North Atlantic Oscillation response to transient greenhouse gas forcing and the impact on European winter climate: a CMIP2 multi-model assessment. Clim Dyn 27:401–420CrossRefGoogle Scholar
  67. Sterl A, van den Brink H, de Vries H, Haarsma R, van Meijgaard E (2009) An ensemble study of extreme North Sea storm surges in a changing climate. Ocean Sci 5:369–378CrossRefGoogle Scholar
  68. Sturges W, Douglas BC (2011) Wind effects on estimates of sea level rise. J Geophys Res 116:C06008. doi: 10.1029/2010JC006492 Google Scholar
  69. Sündermann J, Pohlmann T (2011) A brief analysis of North Sea physics. Oceanologica 53(3):663–689CrossRefGoogle Scholar
  70. Suursaar Ü, Sooäär J (2007) Decadal variations in mean and extreme sea level values alongthe Estonian coast of the Baltic Sea. Tellus A 59:249–260CrossRefGoogle Scholar
  71. Tsimplis MN, Josey SA (2001) Forcing of the Mediterranean Sea by atmospheric oscillations over the North Atlantic. Geophys Res Lett 28:803–806CrossRefGoogle Scholar
  72. Tsimplis MN, Shaw AGP (2008) The forcing of mean sea level variability around Europe. Global Planet Chang 63(2–3):196–202CrossRefGoogle Scholar
  73. Tsimplis MN, Woolf DK, Osborn TJ, Wakelin S, Wolf J, Flather R, Shaw AGP, Woodworth P, Challenor P, Blackman D, Pert F, Yan Z, Jerjeva S (2005) Towards a vulnerability assessment of the UK and northern European coasts: the role of regional climate variability. Philosophical transactions. Mathematical, Physical and Engineering Sciences (Series A 363:1329–1358. doi: 10.1098/rsta.2005.1571
  74. Ullman A, Monbaliu J (2010) Changes in atmospheric circulation over the North Atlantic and sea surge variations along the Belgian coast during the twentieth century. Int J Clim 30:558–568. doi: 10.1002/joc.1904 Google Scholar
  75. Uppala SM, Kallberg PW, Simmons AJ et al (2005) The ERA-40 reanalysis. Q J R Meteorl Soc 131:2961–3012CrossRefGoogle Scholar
  76. Van der Linden P, Mitchell JFB (2009) ENSEMBLES–climate-change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3 PB, UK. 160 pGoogle Scholar
  77. Von Storch HV, Zwiers FW (1999) Statistical analysis in climate research, 1st edn. Cambridge University Press, CambridgeGoogle Scholar
  78. Wahl T, Jensen J, Frank T (2010) On analysing sea level rise in the German Bright since 1844. Nat Hazards Earth Syst Sci 10:171–179. doi: 10.5194/nhess10-171-2010 CrossRefGoogle Scholar
  79. Wahl T, Jensen J, Frank T, Haigh I (2011) Improved estimates of mean sea level changes in the German Bright over the last 166 years. Ocean Dyn 61:701–715. doi: 10.1007/s10236-011-0383-x CrossRefGoogle Scholar
  80. Wakelin S, Woodworth PL, Flather RA, Williams JA (2003) Sea-level dependence on the NAO over the NW European Continental Shelf. Geophys Res Lett 30(7):1403CrossRefGoogle Scholar
  81. Weisse R, Pluess A (2006) Storm-related sea level variation along the North Sea coast as simulated by a high-resolution model 1958–2002. Ocean Dyn 56(1):16–25CrossRefGoogle Scholar
  82. Woodworth PL, Flather RA, Williams JA, Wakelin SL, Jevrejewa S (2007) The dependence of UK extreme sea level and storm surges on the North Atlantic Oscillation. Cont Shelf Res 27(7):935–946CrossRefGoogle Scholar
  83. Woolf DK, Shaw AGP, Tsimplis MN (2003) The influence of the North Atlantic Oscillation on sea level variability. Global Atmos Ozean Syst 9:145–167CrossRefGoogle Scholar
  84. Yan Z, Tsimplis MN, Woolf D (2004) Analysis of the Relationship between the North Atlantic Oscillation and sea level changes in Northwest Europe. Int J Climatol 24:743–758CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sönke Dangendorf
    • 1
  • Thomas Wahl
    • 1
    • 2
  • Enno Nilson
    • 3
  • Birgit Klein
    • 4
  • Jürgen Jensen
    • 1
  1. 1.Research Institute for Water and EnvironmentUniversity of SiegenSiegenGermany
  2. 2.Institute of Advanced Studies–FoKoS (Research Group Civil Security)University of SiegenSiegenGermany
  3. 3.Federal Institute of Hydrology (BfG)KoblenzGermany
  4. 4.German Maritime and Hydrographic Agency (BSH)HamburgGermany

Personalised recommendations