Climate Dynamics

, Volume 43, Issue 5–6, pp 1197–1219 | Cite as

A reconstruction of extratropical Indo-Pacific sea-level pressure patterns during the Medieval Climate Anomaly

  • Ian D. Goodwin
  • Stuart Browning
  • Andrew M. Lorrey
  • Paul A. Mayewski
  • Steven J. Phipps
  • Nancy A. N. Bertler
  • Ross P. Edwards
  • Tim J. Cohen
  • Tas van Ommen
  • Mark Curran
  • Cameron Barr
  • J. Curt Stager
Article

Abstract

Subtropical and extratropical proxy records of wind field, sea level pressure (SLP), temperature and hydrological anomalies from South Africa, Australia/New Zealand, Patagonian South America and Antarctica were used to reconstruct the Indo-Pacific extratropical southern hemisphere sea-level pressure anomaly (SLPa) fields for the Medieval Climate Anomaly (MCA ~700–1350 CE) and transition to the Little Ice Age (LIA 1350–1450 CE). The multivariate array of proxy data were simultaneously evaluated against global climate model output in order to identify climate state analogues that are most consistent with the majority of proxy data. The mean SLP and SLP anomaly patterns derived from these analogues illustrate the evolution of low frequency changes in the extratropics. The Indo-Pacific extratropical mean climate state was dominated by a strong tropical interaction with Antarctica emanating from: (1) the eastern Indian and south-west Pacific regions prior to 1100 CE, then, (2) the eastern Pacific evolving to the central Pacific La Niña-like pattern interacting with a +ve SAM to 1300 CE. A relatively abrupt shift to –ve SAM and the central Pacific El Niño-like pattern occurred at ~1300. A poleward (equatorward) shift in the subtropical ridge occurred during the MCA (MCA–LIA transition). The Hadley Cell expansion in the Australian and Southwest Pacific, region together with the poleward shift of the zonal westerlies is contemporaneous with previously reported Hadley Cell expansion in the North Pacific and Atlantic regions, and suggests that bipolar climate symmetry was a feature of the MCA.

Keywords

Medieval Climate Anomaly Extratropical Southern Annular Mode Pacific South American Mode Paleo-sea-level pressure reconstruction 

References

  1. Allan RJ, Haylock MR (1993) Circulation features associated with the winter rainfall decrease in southwestern Australia. J Clim 6:1356–1367Google Scholar
  2. Aravena JC, Luckman BH (2008) Spatio-temporal rainfall patterns in Southern South America. Int J Climatol. doi:10.1002/joc.1761 Google Scholar
  3. Arblaster J, Meehl G (2006) Contributions of external forcings to southern annular mode trends. J Clim 19:2896–2905Google Scholar
  4. Ashok K, Behera S, Rao S, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi:10.1029/2006jc003798 Google Scholar
  5. Barr C (2010) Droughts and flooding rains: a fine-resolution reconstruction of climatic variability in western Victoria, Australia, over the last 1500 years. PhD thesis, University of Adelaide, AdelaideGoogle Scholar
  6. Bertler NAN, Mayewski PA, Carter L (2011) Cold conditions in Antarctica during the little ice age—implications for abrupt climate change mechanisms. Earth Planet Sci Lett 308:41–51Google Scholar
  7. Bradley RS, Hughes MK, Diaz HF (2003) Climate in medieval time. Science 302:404–405. doi:10.1126/science.1090372 Google Scholar
  8. Bromwich DH, Carrasco JF, Liu Z, Tzeng RT (1993) Hemispheric atmospheric variations and oceanographic impacts associated with katabatic surges across the Ross Ice Shelf, Antarctica. J Geophys Res 98(D7):13045–13062Google Scholar
  9. Brooke B, Ryan D, Pietsch T, Olley J, Douglas G, Packett R, Radke L, Flood P (2008) Influence of climate fluctuations and changes in catchment land use on late holocene and modern beach-ridge sedimentation on a tropical macrotidal coast: Keppel Bay, Queensland, Australia. Mar Geol 251:195–208Google Scholar
  10. Browning S, Goodwin ID (2013) Large scale influences on the evolution of winter subtropical maritime cyclones affecting Australia’s east coast. Mon Weather Rev. doi:10.1175/MWR-D-12-00312.1 Google Scholar
  11. Büntgen U, Franke J, Frank D, Wilson R, González-Rouco F, Esper J (2010) Assessing the spatial signature of European climate reconstructions. Clim Res 41:125–130Google Scholar
  12. Cai W, van Rensch P, Cowan T, Hendon HH (2011a) Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J Clim 24. doi:10.1175/2011JCLI4129.1
  13. Cai W, van Rensch P, Cowan T (2011b) Influence of global-scale variability on the subtropical ridge over southeast Australia. J Clim 24:6035–6053. doi:10.1175/2011JCLI4149.1 Google Scholar
  14. Clement AC, Seager R, Cane MA, Zebiak SE (1996) An ocean dynamical thermostat. J Clim 9:2190–2196. doi:10.1175/1520-0442 Google Scholar
  15. Cobb K, Charles C, Cheng H, Edwards R (2003) El Niño/Southern oscillation and tropical Pacific climate during the last millennium. Nature 424:271–276Google Scholar
  16. Cobb KM, Charles C, Cheng H, Edwards RL (2011) Fossil coral records of tropical Pacific climate over the last millennium: relationship to external forcing. Proceedings of the AGU Fall Meeting, San Francisco, December, 2011Google Scholar
  17. Cohen AL, Parkington JE, Brundrit GB, van der Merwe NJ (1992) A holocene marine climate record in mollusk shells from the southwest African coast. Quat Res 38:379–385Google Scholar
  18. Cohen TJ, Nanson GC, Jansen JD, Jones BG, Jacobs Z, Treble P, Price DM, May J-H, Smith AM, Ayliffe LK, Hellstrom JC et al (2011) Continental aridification and the vanishing of Australia’s megalakes. Geology 39(2):167–170. doi:10.1130/G31518.1 Google Scholar
  19. Cohen TJ, Nanson GC, Jansen JD, Gliganic LA, May J-H, Lasren L, Goodwin ID, Browning S, Price DM (2012) A pluvial episode identified in arid Australia during the medieval climatic anomaly. Quat Sci Rev 56:167–171. doi:10.1016/j.quascirev.2012.09.021 Google Scholar
  20. Conroy JL, Overpeck JT, Cole JE, Shanahan TM, Steinitz-Kannan M (2008) Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record. Quat Sci Rev 27:1166–1180Google Scholar
  21. Cook E, Palmer J, D’arrigo R (2002) Evidence for a “medieval warm period”in a 1, 100 year tree-ring reconstruction of past austral summer temperatures in New Zealand. Geophys Res Lett 29:1667. doi:10.1029/2001gl014580 Google Scholar
  22. Cook E, Buckley BM, Palmer JG, Fenwick P, Peterson MJ, Boswijk G, Fowler A et al (2006) Millennia-long tree-ring records from Tasmania and New Zealand: a basis for modelling climate variability and forcing, past, present and future. J Quat Sci 21: 689–699 ISSN 0267-8179Google Scholar
  23. Delmotte M, Masson V, Jouzel J, Morgan VI (2000) A seasonal deuterium excess signal at Law Dome, coastal eastern Antarctica: a southern ocean signature. J Geophys Res 105:7187–7197. doi:10.1029/1999jd901085 Google Scholar
  24. Diaz HF, Trigo R, Hughes MK, Mann ME, Xoplaki E, Barriopedro D (2011) Spatial and temporal characteristics of climate in medieval times revisited. Bull Am Meteorol Soc 92:1487–1500Google Scholar
  25. Ding Q, Steig EJ, Battisti DS, Kuttel M (2011) Winter warming in West Antarctica caused by central tropical Pacific warming. Nat Geosci 4:398–403. doi:10.1038/ngeo1129 Google Scholar
  26. Ding Q, Steig EJ, Battisti DS, Wallace JM (2012) Influence of the tropics on the southern annular mode. J Clim 25:6330–6348. doi:10.1175/JCLI-D-11-00523.1 Google Scholar
  27. Donders TH, Wagner F, Visscher H (2006) Late pleistocene and holocene subtropical vegetation dynamics recorded in perched lake deposits on Fraser Island, Queensland, Australia. Palaeogeogr Palaeoclimatol Palaeoecol 241:417–439Google Scholar
  28. Ekblom A, Stabel B (2008) Paleohydrology of Lake Nhaucati (southern Mozambique), ~400 AD to present. J Paleolimnol 40:1127–1141Google Scholar
  29. Fogt RL, Bromwich DH (2006) Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the southern annular mode. J Clim 19:979–997Google Scholar
  30. Fogt RL, Bromwich DH, Hines KM (2011) Understanding the SAM influence on the South Pacific ENSO teleconnection. Clim Dyn 36:1555–1576. doi:10.1007/s00382-010-0905-0 Google Scholar
  31. Folland CK, Renwick JA, Salinger MJ, Mullan B (2002) Relative influences of the the interdecadal Pacific oscillation and ENSO on the South Pacific Convergence Zone. Geophys Res Lett 29(13):1643. doi:10.1029/2001GL014201 Google Scholar
  32. Fowler AM, Boswijk G, Lorrey AM, Gergis J, Pyrie M, McCloskey SPJ, Palmer JG, Wunder J (2012) Multi-centennial ENSO insights from New Zealand forest giants. Nat Clim Chang. doi:10.1038/NCLIMATE1374 Google Scholar
  33. Franke J, González-Rouco JF, Frank D, Graham NE (2010) 200 Years of European temperature variability: insights from and tests of the proxy surrogate reconstruction analog method. Clim Dyn 37:133–150. doi:10.1007/s00382-010-0802-6 Google Scholar
  34. Goodwin ID (2005) A mid-shelf wave direction climatology for south-eastern Australia, and its relationship to the El Niño—Southern oscillation, since 1877 AD. Int J Climatol 25:1715–1729Google Scholar
  35. Goodwin ID, Harvey N (2008) Subtropical sea-level history from coral microatolls in the Southern Cook Islands, since 300 AD. Mar Geol 253:14–25Google Scholar
  36. Goodwin I, van Ommen T, Curran M, Mayewski P (2004) Mid latitude winter climate variability in the South Indian and southwest Pacific regions since 1300 AD. Clim Dyn 22:783–794Google Scholar
  37. Goodwin I, Stables M, Olley J (2006) Wave climate, sand budget and shoreline alignment evolution of the Iluka-Woody Bay sand barrier, northern New South Wales, Australia, since 3000 yr BP. Mar Geol 226:127–144Google Scholar
  38. Goosse H, Renssen H, Timmermann A, Bradley RS, Mann ME (2006) Using paleoclimate proxy-data to select optimal realisations in an ensemble of simulations of the climate of the past millennium. Clim Dyn 27:165–184. doi:10.1007/s00382-006-0128-6 Google Scholar
  39. Graham NE et al (2007) Tropical Pacific—mid-latitude teleconnections in medieval times. Clim Chang 83:241–285. doi:10.1007/s10584-007-9239-2 Google Scholar
  40. Graham NE, Ammann CM, Fleitmann D, Cobb KM, Luterbacher J (2010) Support for global climate reorganization during the “medieval climate anomaly”. Clim Dyn. doi:10.1007/s00382-010-0914-z
  41. Griffiths ML, Kimbrough A, Gagan MK, Drysdale RN, Cole JE, Johnson KR, Zhao J-X, Hellstrom J, Ayliffe L, Hantoro W (2011) Towards an annually resolved reconstruction of Info-Pacific hydrology over the past 2000 years. Proceedings of the AGU Fall Meeting, San Francisco, December, 2011Google Scholar
  42. Hall A, Visbeck M (2002) Synchronous variability in the southern hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J Clim 15:3043–3057Google Scholar
  43. Hall BL, Koffman T, Denton GH (2010) Reduced ice extent on the western Antarctic Peninsula at 700 to 970 cal Yr BP. Geology 38:635–638. doi:10.1130/G309321 Google Scholar
  44. Holmgren K, Karlén W, Lauritzen SE, Lee-Thorp JA, Partridge TC, Piketh S, Repinski P, Stevenson C, Svanered O, Tyson PD (1999) 3000-Year high-resolution record of palaeoclimate for North-Eastern South Africa. Holocene 9(3):295–309Google Scholar
  45. Hopkins LC, Holland GJ (1997) Australian heavy-rain days and associated east coast cyclones: 1958–92. J Clim 10:621–635. doi:10.1175/15200442(1997)010<0621:AHRDAA>2.0.CO;2 Google Scholar
  46. Jones P et al (2009) High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. Holocene 19:3–49Google Scholar
  47. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meterol Soc 77:437–471Google Scholar
  48. Karoly D (1989) Southern hemisphere circulation features associated with El Niño-Southern oscillation events. J Clim 2:1239–1252Google Scholar
  49. Khider D, Stott LD, Emile-Geay J, Thunell R, Hammond DE (2011) Assessing El Niño oscillation variability over the past millennium. Paleoceanography 26:PA3222. doi:10.1029/2011PA002139 Google Scholar
  50. Kidson JW (2000) An analysis of New Zealand synoptic types and their use in defining weather regimes. Int J Clim 20(3):299–316Google Scholar
  51. Kiladis GN, Mo K (1998) Interannual and intraseasonal variability in the southern hemisphere. In: Karoly DJ, Vincent DG (eds) Meteorology of the southern hemisphere. American Meteorological Society Monograph, Boston, p 410Google Scholar
  52. Knudsen M, Seidenkrantz M-S, Jacobsen BH, Kijupers A (2011) Tracking the Atlantic multidecadal oscillation through the last 8,000 years. Nat Commun 2:178. doi:10.1038/ncomms1186 Google Scholar
  53. Kreutz K, Mayewski P, Pittalwala I, Meeker L, Twickler M, Whitlow S (2000) Sea level pressure variability in the Amundsen Sea region inferred from a West Antarctic glaciochemical record. J Geophys Res 105:4047–4059Google Scholar
  54. L’Hereux ML, Thompson DWJ (2006) Observed relationships between the El Niño-Southern oscillation and the extratropical zonal mean circulation. J Clim 19:276–287Google Scholar
  55. Lamb HH (1965) The early medieval warm epoch and its sequel. Palaeogeogr Palaeoclimatol Palaeoecol 1:13–37Google Scholar
  56. Lee-Thorp JA, Holmgren K, Lauritzen S-E, Linge H, Moberg A, Partridge TC, Stevenson C, Tyson PD (2001) Rapid climate shifts in the southern African interior throughout the mid to late holocene. Geophys Res Lett 28(23):4507–4510Google Scholar
  57. Linsley BK, Zhang P, Kaplan A, Howe SS, Wellington GM et al (2008) Interdecadal-decadal climate variability from multicoral oxygen isotope records in the South Pacific Convergence Zone region since 1650 AD. Paleoceanography 23:PA2219. doi:10.1029/2007pa001539 Google Scholar
  58. Linsley BK, Rosenthal Y, Oppo DW (2010) Holocene evolution of the Indonesian through flow and the western Pacific warm pool. Nat Geosci 3:578–583Google Scholar
  59. Liu Z, Alexander M (2007) Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev Geophys 45:RG2005. doi:10.1029/2005RG000172 Google Scholar
  60. Lorrey A, Fowler A, Salinger J (2007) Regional climate regime classification as a qualitative tool for interpreting multi-proxy palaeoclimate data spatial patterns: a New Zealand case study Palaeogeography. Palaeoclimatol Palaeoecol 253:407–433Google Scholar
  61. Lorrey A, Williams P, Salinger J, Martin T, Palmer J, Fowler A, Zhao J-X, Neil H (2008) Speleothem stable isotope records interpreted within a multi-proxy framework and implications for New Zealand palaeoclimate reconstruction. Quatern Int 187:52–75Google Scholar
  62. Lorrey AM, Fauchereau N, Stanton C, Chappell PR, Phipps SJ, Mackintosh A, Renwick JA, Goodwin I, Fowler AM (2013) The Little Ice Age climate of New Zealand reconstructed from Southern Alps cirque glaciers: a synoptic type approach. Clim Dyn. doi:10.1007/s00382-013-1876-8
  63. Luterbacher J et al (2010) Circulation dynamics and its influence on European and Mediterranean January–April climate over the past half millennium: results and insights from instrumental data, documentary evidence and coupled climate models. Clim Chang 101:201–234. doi:10.1007/s10584-009-9782-0 Google Scholar
  64. Lyons W, Tyler S, Wharton R Jr, McKnight D, Vaughn B et al (1998) A late holocene desiccation of Lake Hoare and Lake Fryxell, McMurdo dry Valleys, Antarctica. Antarct Sci 10:247–256Google Scholar
  65. MacDonald G, Case R (2005) Variations in the Pacific decadal oscillation over the past millennium. Geophys Res Lett 32:1–4Google Scholar
  66. Mann M, Zhang Z, Rutherford S, Bradley R, Hughes M, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science 326:1256–1260. doi:10.1126/science1177303 Google Scholar
  67. Mattey D, Stephens M, Garcia_Anton E, Hoffmann D, Dredge JA, Fisher RE, Lowry D (2011) The nature of the medieval warm period—little ice ace Transition in an annually resolved speleothem record from Voli Voli Cave, Fiji. Proceedings of the AGU Fall Meeting, San Francisco, December, 2011Google Scholar
  68. Mayewski PA, Rohling E, Stager JC et al (2004) Holocene climate variability. Quat Res 62:243–255Google Scholar
  69. Mayewski PA et al (2005) A 700 year record of southern hemisphere extratropical climate variability. Ann Glaciol 39:127–132Google Scholar
  70. Meehl A, Tebaldi C, Teng H, Peterson TC (2007) Current and future U.S. weather extremes and El Niño. Geophys Res Lett 34:L20704. doi:10.1029/2007GL031027
  71. Mettam P, Tibby J, Barr C, Marshall JC (2011) Development of eighteen mile swamp, North Stradbroke Island: a palaeolimnological study. In: Arthington AH, Page TJ, Rose CW, Raghu S (eds) A place of sandhills: ecology, hydrogeomorphology and management of Queensland’s dune islands, Proceedings of the Royal Society of Queensland, vol 117Google Scholar
  72. Miller AJ, Cayan DR, Barnett TP, Graham NE (1994) The 1976–77 climate shift of the Pacific Ocean. Oceanography 7:1–6Google Scholar
  73. Mo K, Higgins R (1998) The Pacific-South American modes and tropical convection during the southern hemisphere winter. Mon Weather Rev 126:1581–1596Google Scholar
  74. Mo K, Paegle J (2001) The Pacific-South American modes and their downstream effects. Int J Clim 21:1211–1229Google Scholar
  75. Mohtadi M, Romero O, Kaiser J, Hebbeln D (2007) Cooling of the southern high latitudes during the medieval period and its effect on ENSO. Quat Sci Rev 26:1055–1066Google Scholar
  76. Moy C, Dunbar R, Moreno P, Francois J-P, Villa-Martínez R, Mucciarone D, Guilderson T, Garreaud R (2008) Isotopic evidence for hydrologic change related to the westerlies in SW Patagonia, Chile, during the last millennium. Quat Sci Rev 27:1335–1349Google Scholar
  77. Mullan AB, Thompson CS (2006) Analogue forecasting of New Zealand climate anomalies. Int J Clim 26(4):485–504. doi:10.1002/joc1261 Google Scholar
  78. Neukom R et al (2010) Multiproxy summer and winter surface air temperature field reconstructions for southern South America covering the past centuries. Clim Dyn. doi:10.1007/s00382-010-0793-3 Google Scholar
  79. Newton A, Thunell R, Stott L (2006) Climate and hydrographic variability in the Indo-Pacific warm pool during the last millennium. Geophys Res Lett 33:L19710. doi:10.1029/2006gl027234 Google Scholar
  80. Noon PE, Leng MJ, Jones VJ (2003) Oxygen-isotope (δ18O) evidence of Holocene hydrological changes at Signy Island, maritime Antarctica. Holocene 13:251–263. doi:10.1191/0959683603hl611rp Google Scholar
  81. Oglesby R, Feng S, Hu Q, Rowe C (2011) The role of the Atlantic multidecadal oscillation on medieval drought in North America: synthesizing results from proxy data and climate models. Glob Planet Chang. doi:10.1016/jglobplancha201107005 Google Scholar
  82. Oppo DW, Rosenthal Y, Linsley BK (2009) 2,000-Year-long temperature and hydrology reconstructions from the Indo-Pacific warm pool. Nature 460:1113–1116Google Scholar
  83. Orsi AJ, Cornuelle BD, Severinghaus JP (2012) Little Ice Age cold interval in West Antarctica: evidence from borehole temperature at the West Antarctic ice sheet (WAIS) divide. Geophys Res Lett 39:L09710. doi:10.1029/2012GL051260 Google Scholar
  84. PAGES 2K network (2013) Continental-scale temperature variability during the past two millennia. Nat Geosci. doi:10.1038/NGEO1797 Google Scholar
  85. Phipps SJ, Rotstayn LD, Gordon HB, Roberts JL, Hirst AC, Budd WF (2011) The CSIRO Mk3L climate system model version 10—part 1: description and evaluation. Geosci Model Dev 4:483–509. doi:10.5194/gmd-4-483-2011 Google Scholar
  86. Phipps SJ, Rotstayn LD, Gordon HB, Roberts JL, Hirst AC, Budd WF (2012) The CSIRO Mk3L climate system model version 10—part 2: response to external forcings. Geosci Model Dev 5:649–682. doi:10.5194/gmd-5-649-2012 Google Scholar
  87. Putnam AE, Schaefer JM, Denton GH, Barrell DJA, Finkel RC, Andersen BG, Schwartz R, Chinn TJC, Doughty AM (2012) Regional climate control of glaciers in New Zealand and Europe during the pre-industrial holocene. Nat Geosci. doi:10.11038/NGEO1548 Google Scholar
  88. Rein B, Lückge A, Sirocko F (2004) A major holocene ENSO anomaly during the medieval period. Geophys Res Lett 31:L17211. doi:10.1029/2004gl020161 Google Scholar
  89. Rein B, Lückge A, Reinhardt F, Sirocko F, Wolf A, Dullo W-C (2005) El Niño variability off Peru during the last 20, 000 years. Paleoceanography 20:PA4003. doi:10.1029/2004PA001099 Google Scholar
  90. Renwick JA, Revell MJ (1999) Blocking over the South Pacific and Rossby wave propagation. Mon Weather Rev 127:2233–2247. doi:10.1175/1520-0493(1999)127<2233:BOTSPA>20CO;2 Google Scholar
  91. Risbey JS, Pook MJ, McIntosh PC, Ummenhofer CC, Meyers G (2009) Characteristics and variability of synoptic features associated with cool season rainfall in southeastern Australia. Int J Climatol 29:1595–1613Google Scholar
  92. Rodgers KB et al (2011) Interhemispheric gradient of atmospheric radiocarbon reveals natural variability of Southern Ocean winds. Clim Past Discuss 7:347–379Google Scholar
  93. Rodysill JR, Russell JM, Bijaksana S, Brown E, Safiuddin L, Eggermont H et al (2011) A paleolimnological record of rainfall and drought from East Java, Indonesia during the last 1,400 years. J Paleolimnol pp 1–15. doi:10.1007/s10933-011-9564-3
  94. Rosqvist GC, Schuber P (2003) Millennial-scale climate changes on South Georgia, Southern Ocean. Quat Res 59:470–475Google Scholar
  95. Rosqvist GC, Rietti-Shati M, Shemesh A (1999) Late glacial to middle holocene climatic record of lacustrine biogenic silica oxygen isotopes from a Southern Ocean island. Geology 27:967–970Google Scholar
  96. Sachs JP, Myhrvold CL (2011) A shifting band of rain. Sci Am 304(3):60–65Google Scholar
  97. Sachs JP, Sachse D, Smittenberg RK, Zhang Z, Battisti DS, Golubic S (2009) Southward movement of the Pacific intertropical convergence zone AD 1400–1850. Nat Geosci. doi:10.1038/NGEO554 Google Scholar
  98. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363Google Scholar
  99. Schaefer JM et al (2009) High-frequency holocene glacier fluctuations in new Zealand differ from northern signature. Science 324:622. doi:10.1126/science1169312 Google Scholar
  100. Schenk F, Zorita E (2012) Reconstruction of high resolution atmospheric fields for Northern Europe using analog-upscaling. Clim Past Discuss 8:819–868. doi:10.5194/cpd-8-819-2012 Google Scholar
  101. Seidel DJ, Fu Q, Randel WJ, Reichler TJ (2008) Widening of the tropical belt in a changing climate. Nat Geosci 1:21–24Google Scholar
  102. Speirs JC, Steinhoff DF, McGowan HA, Bromwich DH, Monaghan AJ (2010) Foehn winds in the McMurdo dry Valleys, Antarctica: the origin of extreme warming events. J Clim 23:3577–3598Google Scholar
  103. Stager JC, Ryves D, Cumming BF, Meeker LD, Beer J (2005) Solar variability and the levels of Lake Victoria, East Africa, during the last millennium. J Paleolimnol 33:243–251Google Scholar
  104. Stager JC, Ruzmaikin A, Conway D, Verburg P, Mason PJ (2007) Solar variability, ENSO, and the levels of Lake Victoria, East Africa. J Geophys Res 112:D15106. doi:10.1029/2006JD008362 Google Scholar
  105. Stager JC, Cocquyt C, Bonnefille R, Weyhenmeyer C, Bowerman N (2009) A late holocene paleoclimatic history of Lake Tanganyika, East Africa. Quat Res 72:47–56Google Scholar
  106. Stager JC, Mayewski PA, White J, Chase BM, Neumann F, Meadows ME, King C, Dixon D (2012) Precipitation variability in the winter rainfall zone of South Africa during the last 1400 years linked to the austral westerlies. Clim Past 8:877–887Google Scholar
  107. Stammerjohn S, Martinson D, Smith R, Yuan X, Rind D (2008) Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-Southern oscillation and southern annular mode variability. J Geophys Res C Oceans 113:C03S90. doi:10.1029/2007JC004269
  108. Steig EJ et al (2013) Recent climate and ice-sheet changes in West Antarctica compared with the past 2,000 years. Nat Geosci doi:10.1038/NGEO1778
  109. Stine S (1994) Extreme and persistent drought in California and Patagonia during mediaeval time. Nature 369:546–549Google Scholar
  110. Thompson D, Wallace J (2000) Annular modes in the extratropical circulation part I: month-to-month variability. J Clim 13:1000–1016Google Scholar
  111. Tierney JE, Oppo DW, Rosenthal Y, Russell JM, Linsley BK (2010a) Coordinated hydrological regimes in the Indo‐Pacific region during the past two millennia. Paleoceanography 25:PA1102. doi:10.1029/2009PA001871 Google Scholar
  112. Tierney JE, Mayes MT, Meyer N, Johnson C, Swarzenski PW, Cohen AS, Russell JM (2010b) Late-twentieth-century warming in Lake Tanganyika unprecedented since AD 500. Nat Geosci 3. doi:10.1038/NGEO865
  113. Trenberth KE (1997) The definition of El Nino. Bull Am Meterol Soc 78:2771–2777Google Scholar
  114. Trouet V, Esper J, Graham NE, Baker A, Scourse JD, Frank DC (2009) Persistent positive North Atlantic oscillation mode dominated the medieval climate anomaly. Science 324:78–80Google Scholar
  115. Tsonis A, Swanson K, Kravtsov S (2007) A new dynamical mechanism for major climate shifts. Geophys Res Lett 34:L13705. doi:10.1029/2007GL030288 Google Scholar
  116. Turner J (2004) The El Niño–Southern oscillation and Antarctica. Int J Climatol 24:1–31. doi:10.1002/joc965 Google Scholar
  117. Tyson PD, Lindesay JA (1992) The climate of the last 2000 years in southern Africa. Holocene 2:271. doi:10.1177/095968369200200210 Google Scholar
  118. Van den Dool HM (1994) Searching for analogues, how long must we wait? Tellus A 46:314–324. doi:10.1034/j.1600-0870.1994.t01-2-00006.x Google Scholar
  119. van Ommen TD, Morgan V (2010) Snowfall increase in coastal East Antarctica linked with southwest Western Australian drought. Nat Geosci 3:267–272Google Scholar
  120. Vecchi G, Soden B, Wittenberg A, Held I, Leetmaa A, Harrison M et al (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 44. doi:10.1038/nature04744
  121. Villalba R (1990) Climatic fluctuations in Northern Patagonia during the last 1000 years as inferred from tree-ring records. Quat Res 34:346–360Google Scholar
  122. Visbeck M, Hall A (2004) Reply. J Clim 17:2255–2258Google Scholar
  123. Von Gunten L, Grosjean M, Rein B, Urrutia R, Appleby P (2009) A quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo, central Chile, back to AD 850. Holocene 19(6):873–881Google Scholar
  124. Williams AN, Ulm S, Goodwin ID, Smith M (2010) Hunter-gather response to late Holocene climatic variability in northern and central Australia. J Quat Sci 25(6):831–838. doi:10.1002/jqs.1416 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ian D. Goodwin
    • 1
  • Stuart Browning
    • 1
  • Andrew M. Lorrey
    • 2
  • Paul A. Mayewski
    • 3
  • Steven J. Phipps
    • 4
  • Nancy A. N. Bertler
    • 5
  • Ross P. Edwards
    • 6
    • 7
  • Tim J. Cohen
    • 8
  • Tas van Ommen
    • 9
    • 10
  • Mark Curran
    • 9
    • 10
  • Cameron Barr
    • 11
  • J. Curt Stager
    • 12
  1. 1.Marine Climate Risk Group and Environmental ScienceMacquarie UniversitySydneyAustralia
  2. 2.National Climate CentreNational Institute of Water and Atmospheric ResearchAucklandNew Zealand
  3. 3.Climate Change InstituteUniversity of MaineOronoUSA
  4. 4.Climate Change Research Centre, ARC Centre of Excellence for Climate System ScienceUniversity of New South WalesSydneyAustralia
  5. 5.Joint Antarctic Research InstituteVictoria University and GNS ScienceWellingtonNew Zealand
  6. 6.Desert Research InstituteNevada System of Higher EducationRenoUSA
  7. 7.Department of Imaging and Applied PhysicsCurtin UniversityPerthAustralia
  8. 8.GeoQuEST Research Centre, School of Earth and Environmental SciencesUniversity of WollongongWollongongAustralia
  9. 9.Australian Antarctic DivisionKingstonAustralia
  10. 10.Antarctic Climate and Ecosystems CRCUniversity of TasmaniaHobartAustralia
  11. 11.Discipline of Geography, Environment and PopulationUniversity of AdelaideNorth Terrace, AdelaideAustralia
  12. 12.Natural SciencesPaul Smith’s CollegePaul SmithsUSA

Personalised recommendations