Advertisement

Climate Dynamics

, Volume 43, Issue 1–2, pp 517–534 | Cite as

Representation of tropical subseasonal variability of precipitation in global reanalyses

  • Daehyun Kim
  • Myong-In LeeEmail author
  • Dongmin Kim
  • Siegfried D. Schubert
  • Duane E. Waliser
  • Baijun Tian
Article

Abstract

Tropical subseasonal variability of precipitation from five global reanalyses (RAs) is evaluated against Global Precipitation Climatology Project (GPCP) and Tropical Rainfall Measuring Mission (TRMM) observations. The RAs include the three generations of global RAs from the National Center for Environmental Prediction (NCEP), and two other RAs from the European Centre for Medium-Range Weather Forecasts (ECMWF) and the National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC). The analysis includes comparisons of the seasonal means and subseasonal variances of precipitation, and probability densities of rain intensity in selected areas. In addition, the space–time power spectrum was computed to examine the tropical Madden-Julian Oscillation (MJO) and convectively coupled equatorial waves (CCEWs). The modern RAs show significant improvement in their representation of the mean state and subseasonal variability of precipitation when compared to the two older NCEP RAs: patterns of the seasonal mean state and the amplitude of subseasonal variability are more realistic in the modern RAs. However, the probability density of rain intensity in the modern RAs show discrepancies from observations that are similar to what the old RAs have. The modern RAs show higher coherence of CCEWs with observed variability and more realistic eastward propagation of the MJO precipitation. The modern RAs, however, exhibit common systematic deficiencies including: (1) variability of the CCEWs that tends to be either too weak or too strong, (2) limited coherence with observations for waves other than the MJO, and (3) a systematic phase lead or lag for the higher-frequency waves.

Keywords

Reanalysis Precipitation Tropics Subseasonal variability Madden-Julian oscillation Convectively-coupled equatorial waves 

Notes

Acknowledgments

This work was supported by the Korea Meteorological Administration Research and Development Program under Grant APCC 2013-3141. Also, this work was supported by the NASA grant NNX09AK34G for DK, and the NASA Modeling, Analysis, and Prediction (MAP) program for SDS. DEW’s and BT’s contribution to this research was performed at Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech), under a contract with National Aeronautics and Space Administration (NASA). The authors are grateful for the computing resources provided by NASA and the Supercomputing Center at Korea Institute of Science and Technology Information (KSC-2013-C2-011).

References

  1. Bechtold P, Bazile E, Guichard F, Mascart P, Richard E (2001) A mass-flux convection scheme for regional and global models. Q J R Meteorol Soc 127:869–886. doi: 10.1002/qj.49712757309 CrossRefGoogle Scholar
  2. Behrangi A, Lebsock M, Wong S, Lambrigtsen B (2012) On the quantification of oceanic rainfall using spaceborne sensors. J Geophys Res 117:D20105Google Scholar
  3. Bergman JW, Hendon HH, Weickmann KM (2001) Intraseasonal air-sea interactions at the onset of El Nin˜o. J Clim 14:1702–1719CrossRefGoogle Scholar
  4. Bessafi M, Wheeler MC (2006) Modulation of South Indian Ocean tropical cyclones by the Madden–Julian oscillation and convectively coupled equatorial waves. Mon Weather Rev 134:638–656CrossRefGoogle Scholar
  5. Bloom SC, Takacs LL, da Silva AM, Ledvina D (1996) Data assimilation using incremental analysis updates. Mon Weather Rev 124:1256–1271CrossRefGoogle Scholar
  6. Compo GP et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28CrossRefGoogle Scholar
  7. Dee DP et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597CrossRefGoogle Scholar
  8. Derber JC, Parrish DF, Lord SJ (1991) The new global operational analysis system at the national meteorological center. Weather Forecast 6:538–547CrossRefGoogle Scholar
  9. Frank WM, Roundy PE (2006) The role of tropical waves in tropical cyclogenesis. Mon Weather Rev 134:2397–2417CrossRefGoogle Scholar
  10. Frierson DMW, Kim D, Kang I-S, Lee M-I, Lin JL (2011) Structure of AGCM-simulated convectively coupled kelvin waves and sensitivity to convective parameterization. J Atmos Sci 68:26–45CrossRefGoogle Scholar
  11. Hendon HH, Wheeler MC (2008) Some space–time spectral analyses of tropical convection and planetary-scale waves. J Atmos Sci 65:2936–2948CrossRefGoogle Scholar
  12. Hodges KI, Lee RW, Bengtsson L (2011) A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. J Climate 24:4888–4906CrossRefGoogle Scholar
  13. Hong S-Y, Pan H-L (1998) Convective trigger function for a mass-flux cumulus parameterization scheme. Mon Weather Rev 126:2599–2620CrossRefGoogle Scholar
  14. Huffman GJ et al (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeor 8:38–55. doi:http://dx.doi.org/10.1175/JHM560.1 Google Scholar
  15. Huffman GJ, Adler RF, Morrissey M, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multisatellite observations. J Hydrometeor 2:36–50CrossRefGoogle Scholar
  16. Hung M-P, Lin J-L, Wang W, Kim D, Shinoda T, Weaver SJ (2013) MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J Climate (in press)Google Scholar
  17. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77:437–471CrossRefGoogle Scholar
  18. Kanamitsu M, Ebisuzaki W, Woolen J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Amer Meteor Soc 83:1631–1643CrossRefGoogle Scholar
  19. Kessler WS (2001) EOF representations of the Madden–Julian oscillation and its connection with ENSO. J Clim 14:3055–3061Google Scholar
  20. Kiladis GN, Wheeler MC, Haertel PT, Straub KH, Roundy PE (2009) Convectively coupled equatorial waves. Rev Geophys 47, RG2003, doi: 10.1029/2008RG000266
  21. Kim D et al (2009) Application of MJO simulation diagnostics to climate models. J Climate 22:6413–6436. doi:http://dx.doi.org/10.1175/2009JCLI3063.1 Google Scholar
  22. Kim D, Sobel AH, Maloney ED, Frierson DMW, Kang I-S (2011) A systematic relationship between intraseasonal variability and mean state bias in AGCM simulations. J Climate 24:5506–5520. doi:http://dx.doi.org/10.1175/2011JCLI4177.1 Google Scholar
  23. Kleist DT, Parrish DF, Derber JC, Treadon R, Wu W-S, Lord S (2009) Introduction of the GSI into the NCEP global data assimilation system. Weather Forecast 24:1691–1705CrossRefGoogle Scholar
  24. Liebmann B, Hendon HH, Glick JD (1994) The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian oscillation. J Meteor Soc Jpn 72:401–412Google Scholar
  25. Lin J-L et al (2006) Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: convective signals. J Climate 19:2665–2690CrossRefGoogle Scholar
  26. Madden RA, Julian PR (1972) Description of global-scale circulation cells in the tropics with a 40–50 day period. J Atmos Sci 29:1109–1123CrossRefGoogle Scholar
  27. Majda A, Stechmann S (2011) Multi-scale theories for the MJO. In Lau WKM, Waliser DE (eds) Intraseasonal variability of the atmosphere-ocean climate system, 2nd edn. Springer, Heidelberg, p. 613Google Scholar
  28. Maloney ED, Hartmann DL (2000a) Modulation of hurricane activity in the Gulf of Mexico by the Madden–Julian oscillation. Science 287:2002–2004CrossRefGoogle Scholar
  29. Maloney ED, Hartmann DL (2000b) Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J Climate 13:1451–1460CrossRefGoogle Scholar
  30. Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Meteorol Soc Jpn 44:25–43Google Scholar
  31. Molinari J, Lombardo K, Vollaro D (2007) Tropical cyclogenesis within an equatorial Rossby wave packet. J Atmos Sci 64:1301–1317CrossRefGoogle Scholar
  32. Moorthi S, Suarez MJ (1992) Relaxed Arakawa-Schubert. A parameterization of moist convection for general circulation models. Mon Weather Rev 120:978–1002CrossRefGoogle Scholar
  33. Onogi K et al (2007) The JRA-25 reanalysis. J Meteor Soc Jpn 85:369–432. doi: 10.2151/jmsj.85.369 CrossRefGoogle Scholar
  34. Pan H-L, Wu W-S (1994) Implementing a mass-flux convective parameterization package for the NMC medium range forecast model. Preprints, 10th Conference on numerical weather prediction, Portland, OR. Amer Meteor Soc 96–98Google Scholar
  35. Parrish DF, Derber JC (1992) The national meteorological center’s spectral statistical interpolation analysis system. Mon Weather Rev 120:1747–1763CrossRefGoogle Scholar
  36. Rancic M, Derber JC, Parrish D, Treadon R, Kleist DT (2008) The development of the first-order time extrapolation to the observation (FOTO) method and its application in the NCEP global data assimilation system. Proceedings of 12th conference IOAS-AOLS, New Orleans, LA. Amer Meteor Soc 6.1. http://ams.confex.com/ams/88Annual/techprogram/paper_131816.htm
  37. Rienecker MM et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Climate 24:3624–3648. doi: 10.1175/JCLI-D-11-00015.1 CrossRefGoogle Scholar
  38. Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Amer Meteor Soc 91(8):1015–1057CrossRefGoogle Scholar
  39. Sobel AH et al (2008) The role of surface heat fluxes in tropical intraseasonal oscillations. Nat Geosci 1:653–657. doi: 10.1038/ngeo312 CrossRefGoogle Scholar
  40. Sperber KR (2003) Propagation and the vertical structure of the madden–julian oscillation. Mon Weather Rev 131:3018–3037CrossRefGoogle Scholar
  41. Sperber KR, Kim D (2012) Simplified metrics for the identification of the Madden-Julian Oscillation in models. Atmos Sci Lett 13:187–193. doi: 10.1002/asl.378 Google Scholar
  42. Sperber K, Slingo J, Inness P (2011) Modeling Intraseasonal Variability. In Lau WKM, Waliser DE (eds) Intraseasonal variability of the atmosphere-ocean climate system, 2nd edn. Springer, Heidelberg, p 613Google Scholar
  43. Takayabu YN (1994) Large-scale cloud disturbances associated with equatorial waves. Part I: spectral features of the cloud disturbances. J Meteor Soc Japan 72:433–449Google Scholar
  44. Takayabu YN, Iguchi T, Kachi M, Shibata A, Kanzawa H (1999) Abrupt termination of the 1997–1998 El Nino in response to a Madden-Julian oscillation. Nature 402:279–282CrossRefGoogle Scholar
  45. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192CrossRefGoogle Scholar
  46. Tian BJ, Waliser DE, Fetzer E (2006) Modulation of the diurnal cycle of deep convective clouds by the madden-julian oscillation. Geophys Res Lett 30:L20704. doi: 10.1029/2006GL027752 CrossRefGoogle Scholar
  47. Uppala S et al (2005) The ERA-40 Re-analysis. Q J R Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  48. Wang B (2011) Theory. In: Lau WKM, Waliser DE (eds) Intraseasonal variability of the atmosphere-ocean climate system, 2nd edn. Springer, Heidelberg, p 613Google Scholar
  49. Wheeler MC, Kiladis GN (1999) Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber–frequency domain. J Atmos Sci 56:374–399CrossRefGoogle Scholar
  50. Wheeler MC, McBride JL (2011) Australasian monsoon. In: Lau WKM, Waliser DE (eds) Intraseasonal variability in the atmosphere-ocean climate system, 2nd edn. Springer, Heidelberg, p 613Google Scholar
  51. Yang G-Y, Hoskins B, Slingo J (2007) Convectively coupled equatorial waves. Part I: horizontal and vertical structures. J Atmos Sci 64:3406–3423CrossRefGoogle Scholar
  52. Yasunari T (1979) Cloudiness fluctuations associated with the northern hemisphere summer monsoon. J Metor Soc Jpn 57–3:227–242Google Scholar
  53. Zhang C (2005) Madden-Julian oscillation. Rev Geophys 43:RG2003, doi: 10.1029/2004RG000158
  54. Zhang MH et al (2005) Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J Geophys Res 110:D15S02, doi: 10.1029/2004JD005021

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Daehyun Kim
    • 1
  • Myong-In Lee
    • 2
    Email author
  • Dongmin Kim
    • 2
  • Siegfried D. Schubert
    • 3
  • Duane E. Waliser
    • 4
  • Baijun Tian
    • 4
  1. 1.Lamont-Doherty Earth ObservatoryColumbia UniversityPalisadesUSA
  2. 2.School of Urban and Environmental EngineeringUlsan National Institute of Science and TechnologyUlsanRepublic of Korea
  3. 3.NASA Goddard Space Flight CenterGreenbeltUSA
  4. 4.NASA Jet Propulsion LaboratoryPasadenaUSA

Personalised recommendations