Climate Dynamics

, Volume 42, Issue 5–6, pp 1595–1611 | Cite as

Present and future near-surface wind climate of Greenland from high resolution regional climate modelling

  • W. Gorter
  • J. H. van Angelen
  • J. T. M. Lenaerts
  • M. R. van den Broeke


The present and twenty-first century near-surface wind climate of Greenland is presented using output from the regional atmospheric climate model RACMO2. The modelled wind variability and wind distribution compare favourably to observations from three automatic weather stations in the ablation zone of southwest Greenland. The Weibull shape parameter is used to classify the wind climate. High values (κ > 4) are found in northern Greenland, indicative of uniform winds and a dominant katabatic forcing, while lower values (κ < 3) are found over the ocean and southern Greenland, where the synoptic forcing dominates. Very high values of the shape parameter are found over concave topography where confluence strengthens the katabatic circulation, while very low values are found in a narrow band along the coast due to barrier winds. To simulate the future (2081–2098) wind climate RACMO2 was forced with the HadGEM2-ES general circulation model using a scenario of mid-range radiative forcing of +4.5 W m−2 by 2100. For the future simulated climate, the near-surface potential temperature deficit reduces in all seasons in regions where the surface temperature is below the freezing point, indicating a reduction in strength of the near-surface temperature inversion layer. This leads to a wind speed reduction over the central ice sheet where katabatic forcing dominates, and a wind speed increase over steep coastal topography due to counteracting effects of thermal and katabatic forcing. Thermally forced winds over the seasonally sea ice covered region of the Greenland Sea are reduced by up to 2.5 m s−1.


Greenland RACMO2/GR Katabatic Weibull Wind 

Supplementary material

382_2013_1861_MOESM1_ESM.pdf (6.2 mb)
PDF (6318 KB)


  1. Bamber JL, Layberry RL, Gogineni SP (2001) A new ice thickness and bed data set for the Greenland ice sheet: 1. Measurement, data reduction, and errors. J Geophys Res 106(D24):33773–33780. doi:10.1029/2001JD900054 Google Scholar
  2. Belleflamme A, Fettweis X, Lang C, Erpicum M (2012) Current and future atmospheric circulation at 500 hPa over Greenland simulated by the CMIP3 and CMIP5 global models. Clim Dyn. doi:10.1007/s00382-012-1538-2
  3. Bøggild CE, Brandt RE, Brown KJ, Warren SG (2010) The ablation zone in northeast Greenland: ice types, albedos and impurities. J Glaciol 56:101–113. doi:10.3189/002214310791190776 CrossRefGoogle Scholar
  4. Bougamont M, Bamber JL, Greuell W (2005) A surface mass balance model for the Greenland ice sheet. J Geophys Res 110(F04018). doi:10.1029/2005JF000348
  5. Box J, Bromwich D, Veenhuis B, Bai L, Stroeve J, Rogers J, Steffen K, Haran T, Wang S (2006) Greenland ice sheet surface mass balance variability (1988–2004) from calibrated Polar MM5 output. J Clim 19:2783–2800. doi:10.1175/JCLI3738.1 CrossRefGoogle Scholar
  6. Box JE, Yang L, Bromwich DH, Bai LS (2009) Greenland ice sheet surface air temperature variability: 1840-2007. J Clim 22:4029–4049. doi:10.1175/2009JCLI2816.1 CrossRefGoogle Scholar
  7. Bromwich DH, Cassano JJ, Klein T, Heinemann G, Hines KM, Steffen K, Box JE (2001) Mesoscale modeling of katabatic winds over Greenland with the Polar MM5. Mon Weather Rev 129:2290–2309. doi:10.1175/1520-0493(2001)129<2290:MMOKWO>2.0.CO;2 CrossRefGoogle Scholar
  8. Cappelen J, Jørgensen BV, Laursen EV, Stannius LS, Thomsen RS (2001) The observed climate of Greenland, 1958–1999—with climatological standard normals, 1961–1990. Technical report 00-18, Danish Meteorological Institute, Ministery of Transport, Copenhagen, DenmarkGoogle Scholar
  9. Cassano JJ, Box JE, Bromwich DH, Li L, Steffen K (2001) Evaluation of Polar MM5 simulations of Greenlands’s atmospheric circulation. J Geophys Res 106(D24):33867–33889. doi:10.1029/2001JD900044 Google Scholar
  10. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hlm EV, Isaksen L, Kllberg P, Khler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thpaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteor Soc 137(656):553–597. doi:10.1002/qj.828 CrossRefGoogle Scholar
  11. Dethloff K, Schwager M, Christensen J, Kiilholm S, Rinke A, Dorn W, Jung-Rothenhäusler F, Fischer H, Kipfstuhl S, Miller H (2002) Recent Greenland accumulation estimated from regional climate model simulations and ice core analysis. J Clim 15:2821–2832. doi:10.1175/1520-0442(2002)015<2821:RGAEFR>2.0.CO;2 CrossRefGoogle Scholar
  12. Duynkerke PG, van den Broeke MR (1994) Surface energy balance and katabatic flow over glacier and tundra during GIMEX-91. Global Planet Change 9:17–28. doi:10.1016/0921-8181(94)90004-3 CrossRefGoogle Scholar
  13. Ettema J, van den Broeke MR, van Meijgaard E, van de Berg WJ, Bamber JL, Box JE, Bales RC (2009) Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling. Geophys Res Lett 36(L12501). doi:10.1029/2009GL038110
  14. Ettema J, van den Broeke MR, van Meijgaard E, van de Berg WJ (2010a) Climate of the Greenland ice sheet using a high-resolution climate model—part 2: near-surface climate and energy balance. Cryosphere 4:529–544. doi:10.5194/tc-4-529-2010 CrossRefGoogle Scholar
  15. Ettema J, van den Broeke MR, van Meijgaard E, van de Berg WJ, Box JE, Steffen K (2010b) Climate of the Greenland ice sheet using a high-resolution climate model—part 1: evaluation. Cryosphere 4:511–527. doi:10.5194/tc-4-511-2010 CrossRefGoogle Scholar
  16. Fettweis X, Franco B, Tedesco M, van Angelen JH, Lenaerts JTM, van den Broeke MR, Galée H (2012a) Estimating Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. Cryosphere Discuss 6:3101–3147. doi:10.5194/tcd-6-3101-2012 CrossRefGoogle Scholar
  17. Fettweis X, Hanna E, Lang C, Belleflamme A, Erpicum M, Gallée H (2012b) Brief communication “Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet”. Cryosphere Discuss 4101–4122. doi:10.5194/tcd-6-4101-2012
  18. Franco B, Fettweis X, Lang C, Erpicum M (2012) Impact of spatial resolution on the modelling of the Greenland ice sheet surface mass balance between 1990–2010, using the regional climate model MAR. Cryosphere 6(3):695–711. doi:10.5194/tc-6-695-2012 CrossRefGoogle Scholar
  19. Franco B, Fettweis X, Erpicum M (2013) Future projections of the Greenland ice sheet energy balance driving the surface melt. Cryosphere 7:1–18. doi:10.5194/tc-7-1-2013 CrossRefGoogle Scholar
  20. Gallée H, Schayes G (1994) Development of a three-dimensional meso-γ primitive equation model: Katabatic winds simulation in the area of Terra Nova Bay, Antarctica. Mon Weather Rev 122:671–685. doi:10.1175/1520-0493(1994)122<0671:DOATDM>2.0.CO;2 CrossRefGoogle Scholar
  21. Harden BE, Renfrew IA (2012) On the spatial distribution of high winds off southeast Greenland. Geophys Res Lett 39(L14806). doi:10.1029/2012GL052245
  22. Heinemann G (1999) The KABEG’97 field experiment: an aircraft-based study of katabatic wind dynamics over the Greenland ice sheet. Bound Lay Meteorol 93:75–116. doi:10.1023/A:1002009530877 CrossRefGoogle Scholar
  23. Heinemann G, Klein T (2002) Modelling and observations of the katabatic flow dynamics over Greenland. Tellus A 54:542–554. doi:10.1034/j.1600-0870.2002.201401.x CrossRefGoogle Scholar
  24. Isemer H, Hasse L (1991) The scientific Beaufort equivalent scale: effects on wind statistics and climatological air-sea flux estimates in the North Atlantic ocean. J Clim 4:819–836. doi:10.1175/1520-0442(1991)004<0819:TSBESE>2.0.CO;2 CrossRefGoogle Scholar
  25. Klein T, Heinemann G, Bromwich DH, Cassano JJ, Hines KM (2001) Mesoscale modeling of katabatic winds over Greenland and comparisons with AWS and aircraft data. Meteorol Atmos Phys 78:115–132. doi:10.1007/s007030170010 CrossRefGoogle Scholar
  26. Kuipers Munneke P, Van den Broeke MR, Lenaerts JTM, Flanner MG, Gardner AS, Van de Berg WJ (2011) A new albedo parameterization for use in climate models over the Antarctic ice sheet. J Geophys Res 116(D05114). doi:10.1029/2010JD015113
  27. Lenaerts JTM, van den Broeke MR, van Angelen JH, van Meijgaard E, Déry SJ (2012a) Drifting snow climate of the Greenland ice sheet: a study with a regional climate model. Cryosphere 6:891–899. doi:10.5194/tc-6-891-2012 CrossRefGoogle Scholar
  28. Lenaerts JTM, van den Broeke MR, van de Berg WJ, van Meijgaard E, Kuipers Munneke P (2012b) A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modelling. Geophys Res Lett 39(L04501). doi:10.1029/2011GL050713
  29. Monahan AH (2006a) The probability distribution of sea surface wind speeds. part I: theory and SeaWinds observations. J Clim 19:497–520. doi:10.1175/JCLI3640.1 CrossRefGoogle Scholar
  30. Monahan AH (2006b) The probability distribution of sea surface wind speeds. Part II: dataset intercomparison and seasonal variability. J Clim 19:521–534. doi:10.1175/JCLI3641.1 CrossRefGoogle Scholar
  31. Moore GWK, Renfrew IA (2005) Tip jets and barrier winds: a QuikSCAT climatology of high wind speed events around Greenland. J Clim 18:3713–3725. doi:10.1175/JCLI3455.1 CrossRefGoogle Scholar
  32. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823 CrossRefGoogle Scholar
  33. Oerlemans J, Vugts HF (1993) A meteorological experiment in the melting zone of the Greenland ice sheet. B Am Meteorol Soc 74(3):355–365. doi:10.1175/1520-0477(1993)074<0355:AMEITM>2.0.CO;2 CrossRefGoogle Scholar
  34. Parish TR, Bromwich DH (1987) The surface windfield over the Antarctic ice sheets. Nature 328:51–54. doi:10.1038/328051a0 CrossRefGoogle Scholar
  35. Pavia EG, O’Brien JJ (1986) Weibull statistics of wind speed over the ocean. J Clim Appl Meteorol 25:1324–1332. doi:10.1175/1520-0450(1986)025<1324:WSOWSO>2.0.CO;2 CrossRefGoogle Scholar
  36. Pryor SC, Barthelmie RJ, Kjellström E (2005) Potential climate change impact on wind energy resources in northern Europe: analyses using a regional climate model. Clim Dyn 25:815–835. doi:10.1007/s00382-005-0072-x CrossRefGoogle Scholar
  37. Renfrew IA, Anderson PS (2002) The surface climatology of an ordinary katabatic wind regime in Coats Land, Antarctica. Tellus A 54:463–484. doi:10.1034/j.1600-0870.2002.201397.x CrossRefGoogle Scholar
  38. Rignot E, Velicogna I, van den Broeke MR, Monaghan A, Lenaerts JTM (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett 38(L05503). doi:10.1029/2011GL046583
  39. Santer BD, Wigley TML, Boyle JS, Gaffen DJ, Hnilo JJ, Nychka D, Parker DE, Taylor KE (2000) Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J Geophys Res 105(D6):7337–7356. doi:10.1029/1999JD901105 CrossRefGoogle Scholar
  40. Sanz Rodrigo J, Buchlin JM, Van Beeck J, Lenaerts JTM, Van den Broeke MR (2012) Evaluation of Antarctic surface wind climate from ERA reanalyses and RACMO2/ANT simulations based on automatic weather stations. Clim Dyn. Online first. doi:10.1007/s00382-012-1396-y
  41. Steffen K, Box JE (2001) Surface climatology of the Greenland ice sheet: Greenland Climate Network 1995–1999. J Geophys Res 106(D24):33951–33964. doi:10.1029/2001JD900161 CrossRefGoogle Scholar
  42. Undén P, Rontu L, Järvinen H, Lynch P, Calvo J, Cats G, Cuxart J, Eerola K, Fortelius C, Garcia-Moya JA, Jones C, Lenderlink G, Mcdonald A, Mcgrath R, Navascues B, Nielsen NW, Ødegaard V, Rodriguez E, Rummukainen M, Rǒǒm R, Sattler K, Sass BH, Savijärvi H, Schreur BW, Sigg R, The H, Tijm A (2002) HIRLAM-5 scientific documentation. Tech. rep., Swedish Meteorological and Hydrological Institute, Norrköping, SwedenGoogle Scholar
  43. Våge K, Spengler T, Davies HC, Pickart RS (2009) Multi-event analysis of the westerly Greenland tip jet based upon 45 winters in ERA-40. Q J R Meteorol Soc 135:1999–2011. doi:10.1002/qj.488 CrossRefGoogle Scholar
  44. Van Angelen JH, Van den Broeke MR, Van de Berg WJ (2011a) Momentum budget of the atmospheric boundary layer over the Greenland ice sheet and its surrounding seas. J Geophys Res 116(D10101). doi:10.1029/2010JD015485
  45. Van Angelen JH, Van den Broeke MR, Kwok R (2011b) The Greenland Sea Jet: a mechanism for wind-driven sea ice export through Fram Strait. Geophys Res Lett 38(L12805). doi:10.1029/2011GL047837
  46. Van Angelen JH, Lenaerts JTM, Lhermitte S, Fettweis X, Kuipers Munneke P, Van den Broeke MR, Van Meijgaard E (2012) Sensitivity of Greenland ice sheet surface mass balance to surface albedo parameterization: a study with a regional climate model. Cryosphere Discuss 6:1531–1562. doi:10.5194/tcd-6-1531-2012 CrossRefGoogle Scholar
  47. Van As D, Fausto R, PROMICE project team (2011) Programme for monitoring of the Greenland ice sheet (PROMICE): first temperature and ablation recors. Geol Surv Den Greenl 23:73–76Google Scholar
  48. Van de Berg WJ, Van den Broeke MR, Van Meijgaard E (2008) Spatial structures in the heat budget of the Antarctic atmospheric boundary layer. Cryosphere 2(1):1–12. doi:10.5194/tc-2-1-2008 CrossRefGoogle Scholar
  49. Van de Wal RSW, Boot W, Smeets CJPP, Snellen H, van den Broeke MR, Oerlemans J (2012) Twenty-one years of mass balance observations along the K-transect, West Greenland. Earth Syst Sci Data 4(1):31–35. doi:10.5194/essd-4-31-2012 CrossRefGoogle Scholar
  50. Van den Broeke MR, Gallée H (1996) Observation and simulation of barrier winds at the western margin of the Greenland ice sheet. Q J R Meteor Soc 122:1265–1383. doi:10.1002/qj.49712253407 CrossRefGoogle Scholar
  51. Van den Broeke MR, Van Lipzig NPM (2003) Factors controlling the near-surface wind field in Antarctica. Mon Weather Rev 131:733–743. doi:10.1175/1520-0493(2003)131<0733:FCTNSW>2.0.CO;2 CrossRefGoogle Scholar
  52. Van den Broeke MR, Duynkerke PG, Oerlemans J (1994) The observed katabatic flow at the edge of the Greenland ice sheet during GIMEX-91. Global Planet Change 9:3–15. doi:10.1016/0921-8181(94)90003-5 CrossRefGoogle Scholar
  53. Van den Broeke MR, Smeets P, Ettema J (2008a) Surface layer climate and turbulent exchange in the ablation zone of the west Greenland ice sheet. Int J Climatol 29:2309–2323. doi:10.1002/joc.1815 CrossRefGoogle Scholar
  54. Van den Broeke MR, Smeets P, Ettema J, Kuipers Munneke P (2008b) Surface radiation balance in the ablation zone of the west Greenland ice sheet. J Geophys Res 113(D13105). doi:10.1029/2007JD009283
  55. Van den Broeke MR, Bamber J, Ettema J, Rignot E, Schrama E, Van de Berg WJ, Van Meijgaard E, Velicogna I, Wouters B (2009) Partitioning recent Greenland mass loss. Science 326:984–986. doi:10.1126/science.1178176 CrossRefGoogle Scholar
  56. Van Meijgaard E, Van Ulft LH, Van de Berg WJ, Bosveld FC, Van den Hurk BJJM, Lenderink G, Siebesma AP (2008) The KNMI regional atmospheric climate model RACMO version 2.1. Technical Report TR-302, Royal Netherlands Meteorological Institute, De Bilt, The NetherlandsGoogle Scholar
  57. White P (2001) Physical processes (CY23R4). Technical report, European Centre for Medium-Range Weather Forecasts (ECMWF)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • W. Gorter
    • 1
  • J. H. van Angelen
    • 1
  • J. T. M. Lenaerts
    • 1
  • M. R. van den Broeke
    • 1
  1. 1.Institute for Marine and Atmospheric Research (IMAU)Utrecht UniversityUtrechtThe Netherlands

Personalised recommendations