Skip to main content

The MJO and global warming: a study in CCSM4

Abstract

The change in Madden–Julian oscillation (MJO) amplitude and variance in response to anthropogenic climate change is assessed in the 1° nominal resolution community climate system model, version 4 (CCSM4), which has a reasonable representation of the MJO characteristics both dynamically and statistically. The twentieth century CCSM4 run is compared with the warmest twenty-first century projection (representative concentration pathway 8.5, or RCP8.5). The last 20 years of each simulation are compared in their MJO characteristics, including spatial variance distributions of winds, precipitation and outgoing longwave radiation, histograms of event amplitude, phase and duration, and composite maps of phases. The RCP8.5 run exhibits increased variance in intraseasonal precipitation, larger-amplitude MJO events, stronger MJO rainfall in the central and eastern tropical Pacific, and a greater frequency of MJO occurrence for phases corresponding to enhanced rainfall in the Indian Ocean sector. These features are consistent with the concept of an increased magnitude for the hydrological cycle under greenhouse warming conditions. Conversely, the number of active MJO days decreases and fewer weak MJO events occur in the future climate state. These results motivate further study of these changes since tropical rainfall variability plays such an important role in the region’s socio-economic well being.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Allan RP, Soden BJ (2008) Atmospheric warming and the amplification of precipitation extremes. Science 321:1481–1484

    Article  Google Scholar 

  • Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232

    Article  Google Scholar 

  • D’Agostini G (2003) Bayesian reasoning in data analysis—a critical introduction. World Scientic, Singapore

    Book  Google Scholar 

  • Deser C, Phillips AS, Tomas RA, Okumura YM, Alexander MA, Capotondi A, Scott JD, Kwon YO, Ohba M (2012) ENSO and Pacific decadal variability in the community climate system model version 4. J Clim 25:2622–2651

    Article  Google Scholar 

  • Gent P, Yeager S, Neale RB, Levis S, Bailey D (2010) Improvements in a half degree atmosphere/land version of the CCSM. Clim Dyn 34:819–833

    Article  Google Scholar 

  • Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang ZL, Zhang M (2011) The community climate system model version 4. J Clim 24:4973-4991

    Article  Google Scholar 

  • Held IM, Soden B (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686-5699

    Article  Google Scholar 

  • Jochum M, Danabasoglu G, Holland M, Kwon Y, Large W (2008) Ocean viscosity and climate. J Geophys Res 113:C06017 doi:10.1029/2007JC004515

    Google Scholar 

  • Jones C, Carvalho L (2006) Changes in the activity of the Madden–Julian oscillation during 1958–2004. J Clim 19:6353–6370

    Article  Google Scholar 

  • Jones C, Carvalho L (2011) Will global warming modify the activity of the Madden–Julian oscillation? Q J R Meteorol Soc 137:544–552

    Article  Google Scholar 

  • Karnauskas KB, Seager R, Kaplan A, Kushnir Y, Cane MA (2009) Observed strengthening of the zonal sea surface temperature gradient across the equatorial Pacific Ocean*. J Clim 22:4316–4321

    Article  Google Scholar 

  • Kiladis GN, Wheeler M, Haertel P, Straub K, Roundy P (2009) Convectively coupled equatorial waves. Rev Geophys 47:RG2003 doi:10.1029/2008RG000266.

    Article  Google Scholar 

  • Lamarque JF, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B, Schultz MG, Shindell D, Smith SJ, Stehfest E, Van Aardenne J, Cooper OR, Kainuma M, Mahowald N, McConnell JR, Naik V, Riahi K, van Vuuren DP (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10:7017–7039

    Article  Google Scholar 

  • Lamarque JF, Kyle GP, Meinshausen M, Riahi K, Smith SJ, van Vuuren DP, Conley AJ, Vitt F (2011) Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration pathways. Clim Chang 109:191–212

    Article  Google Scholar 

  • Lau WK (2005) El Niño southern oscillation connection. In: Intraseasonal variability in the atmosphere-ocean climate system. Springer, Berlin, pp 271–305

  • Lau WK, Waliser DE (2012) Intraseasonal variability in the atmosphere-ocean climate system. In: Springer-Praxis books. Springer, Berlin

  • Lin J, Weickmann K, Kiladis G, Mapes B, Sperber K, Lin W, Wheeler M, Schubert S, Genio AD, Donner LJ, Emori S, Gueremy JF, Hourdin F, Rasch PJ, Roeckner E, Scinocca JF (2006) Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: convective signals. J Clim 19:2665–2690

    Article  Google Scholar 

  • Lin S (2004) A “vertically Lagrangian” finite-volume dynamical core for global models. Mon Weather Rev 132:2293–2307

    Article  Google Scholar 

  • Liu P, Li T, Wang B, Zhang M, Luo JJ, Masumoto Y, Wang X, Roeckner E (2012) MJO change with A1B global warming estimated by the 40-km ECHAM5. Clim Dyn. doi:10.1007/s00382-012-1532-8

  • Madden RA, Julian P (1994) Observations of the 40–50-day tropical oscillation—a review. Mon Weather Rev 122:814–837

    Article  Google Scholar 

  • Maloney ED, Sobel AH, Hannah WM (2010) Intraseasonal variability in an aquaplanet general circulation model. J Adv Model Earth Syst 2. doi:10.3894/JAMES.2010.2.5

  • Matthews A (2004) Variability of Antarctic circumpolar transport and the southern annular mode associated with the Madden–Julian oscillation. Geophys Res Lett 31:L24312. doi:10.1029/2004GL021666.

    Article  Google Scholar 

  • Matthews A, Singhruck P, Heywood KJ (2007) Deep ocean impact of a Madden–Julian oscillation observed by Argo floats. Science 318:1765–1769

    Article  Google Scholar 

  • McPhaden M (1999) Genesis and evolution of the 1997–1998 El Niño. Science. doi:10.1126/science.283.5404.950

  • Meehl GA, Washington WM, Arblaster JM, Hu A, Teng H, Tebaldi C, Sanderson BN, Lamarque JF, Conley A, Strand WG, White JB III (2012) Climate system response to external forcings and climate change projections in CCSM4. J Clim 25:3661–3683

    Article  Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756

    Article  Google Scholar 

  • Neale R, Richter J, Jochum M (2008) The impact of convection on ENSO: from a delayed oscillator to a series of events. J Clim 21:5904–5924

    Article  Google Scholar 

  • Neale RB, Richter J, Park S, Lauritzen PH, Vavrus SJ, Rasch PJ, Zhang M (2012) The mean climate of the community atmosphere model (CAM4). J Clim. doi:10.1175/JCLI-D-12-00236.1

  • O’Gorman PA, Schneider T (2008) The hydrological cycle over a wide range of climates simulated with an idealized GCM. J Clim 21:3815–3832

    Article  Google Scholar 

  • O’Gorman PA, Schneider T (2009a) Scaling of precipitation extremes over a wide range of climates simulated with an idealized GCM. J Clim 22:5676–5685

    Article  Google Scholar 

  • O’Gorman PA, Schneider T (2009b) The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc Natl Acad Sci 106:14773–14777

  • Pohl B, Matthews A (2007) Observed changes in the lifetime and amplitude of the Madden–Julian oscillation associated with interannual ENSO sea surface temperature anomalies. J Clim 20:2659–2674

    Article  Google Scholar 

  • Richter J, Rasch PJ (2008) Effects of convective momentum transport on the atmospheric circulation in the community atmosphere model, version 3. J Clim 21:1487–1499

    Article  Google Scholar 

  • Roundy PE, MacRitchie K, Asuma J, Melino T (2010) Modulation of the global atmospheric circulation by combined activity in the Madden–Julian oscillation and the El Niño-Southern oscillation during boreal winter. J Clim 23:4045–4059

    Article  Google Scholar 

  • Schneider T, O’Gorman PA, Levine XJ (2010) Water vapor and the dynamics of climate changes. Rev Geophys 48:RG3001. doi:10.1029/2009RG000302

    Article  Google Scholar 

  • Seager R, Naik N, Vogel L (2012) Does global warming cause intensified interannual hydroclimate variability?* J Clim 25:3355–3372

    Article  Google Scholar 

  • Slingo JM, Rowell DP, Sperber KR, Nortley F (1999) On the predictability of the interannual behaviour of the Madden–Julian oscillation and its relationship with El Niño. Quart J R Meteorol Soc 125:583–609

    Google Scholar 

  • Stevenson S, Fox-Kemper B, Jochum M, Neale R, Deser C, Meehl G (2011) Will there be a significant change to El Nino in the 21st century? J Clim 25:2129-2145

    Article  Google Scholar 

  • Subramanian AC, Jochum M, Miller A, Murtugudde R, Neale R, Waliser DE (2011) The Madden–Julian oscillation in CCSM4. J Clim 24:6261–6282

    Article  Google Scholar 

  • Tokinaga H, Xie S-P, Deser C, Kosaka Y, Okumura YM (2012) Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature 491:439–443

    Article  Google Scholar 

  • Trenberth K, Dai A, Rasmussen RM (2003) The changing character of precipitation. Bull Am Meteorol Soc 84:1205–1217

    Article  Google Scholar 

  • Vecchi G, Soden B, Wittenberg A, Held IM (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441. doi:10.1038/nature04744

  • Waliser DE (2006) Intraseasonal variability. In: Wang B (ed) The Asian monsoon. Springer, Berlin, pp 203–257

    Chapter  Google Scholar 

  • Waliser DE, Sperber K, Hendon HH, Kim D, Maloney E, Wheeler M, Weickmann K, Zhang C, Donner LJ, Gottschalck J (2008) MJO simulation diagnostics. J Clim 22:3006–3030

    Google Scholar 

  • Wheeler M, Hendon, HH (2004) An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon Weather Rev 132:1917–1932

    Article  Google Scholar 

  • Zhang C (2005) Madden–Julian oscillation. Rev Geophys 43:1–36

    Google Scholar 

  • Zhang C, Gottschalck J (2002) SST Anomalies of ENSO and the Madden–Julian oscillation in the Equatorial Pacific*. J Clim 15:2429–2445

    Article  Google Scholar 

  • Zhou L, Neale RB, Jochum M, Murtugudde R (2012a) Improved Madden–Julian oscillations with improved physics: the impact of modified convection parameterizations. J Clim 25:1116–1136

    Article  Google Scholar 

  • Zhou L, Sobel AH, Murtugudde R (2012b) Kinetic energy budget for the Madden–Julian oscillation in a multiscale framework. J Clim 25:5386–5403

    Article  Google Scholar 

Download references

Acknowledgments

This research forms a part of the Ph.D. dissertation of A.S. We gratefully acknowledge funding from ONR (N00014-13-1-0139) and NSF (OCE-0960770). This research was initiated during a visit by A.S. to NCAR funded by the SUNNY (Scripps/UCSD/NCAR New and Young) Program. A.S. acknowledges NCARs computational support for simulations conducted for this study. We thank Mitch Moncrieff and Brian Mapes for erudite comments, and criticism of this work. A.S. extends heartfelt thanks to Bruce Cornuelle and Ian Eisenman for many invaluable gems of wisdom on science and data analysis. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneesh Subramanian.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Subramanian, A., Jochum, M., Miller, A.J. et al. The MJO and global warming: a study in CCSM4. Clim Dyn 42, 2019–2031 (2014). https://doi.org/10.1007/s00382-013-1846-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1846-1

Keywords

  • MJO
  • Climate change
  • CCSM4