Skip to main content

Response of the Atlantic meridional overturning circulation to a reversal of greenhouse gas increases

Abstract

The reversibility of the Atlantic meridional overturning circulation (AMOC) is investigated in multi-model experiments using global climate models (GCMs) where CO2 concentrations are increased by 1 or 2 % per annum to 2× or 4× preindustrial conditions. After a period of stabilisation the CO2 is decreased back to preindustrial conditions. In most experiments when the CO2 decreases, the AMOC recovers before becoming anomalously strong. This "overshoot" is up to an extra 18.2Sv or 104 % of its preindustrial strength, and the period with an anomalously strong AMOC can last for several hundred years. The magnitude of this overshoot is shown to be related to the build up of salinity in the subtropical Atlantic during the previous period of high CO2 levels. The magnitude of this build up is partly related to anthropogenic changes in the hydrological cycle. The mechanisms linking the subtropical salinity increase to the subsequent overshoot are analysed, supporting the relationship found. This understanding is used to explain differences seen in some models and scenarios. In one experiment there is no overshoot because there is little salinity build up, partly as a result of model differences in the hydrological cycle response to increased CO2 levels and partly because of a less aggressive scenario. Another experiment has a delayed overshoot, possibly as a result of a very weak AMOC in that GCM when CO2 is high. This study identifies aspects of overshoot behaviour that are robust across a multi-model and multi-scenario ensemble, and those that differ between experiments. These results could inform an assessment of the real-world AMOC response to decreasing CO2.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Armour K, Eisenman I, Blanchard-Wrigglesworth E, McCusker K, Bitz C (2011) The reversibility of sea ice loss in a state-of-the-art climate model. Geophys Res Lett 38:L16705

    Google Scholar 

  • Barker S, Knorr G, Vautravers M, Diz P, Skinner L (2010) Extreme deepening of the Atlantic overturning circulation during deglaciation. Nat Geosci 3:567–571

    Article  Google Scholar 

  • Bentsen M, Bethke I, Debernard J, Iversen T, Kirkevåg A, Seland Ø, Drange H, Roelandt C, Seierstad I, Hoose C et al (2012) The Norwegian earth system model, NorESM1-M-Part 1: Description and basic evaluation. Geosci Model Dev Discuss 5:2843–2931

    Article  Google Scholar 

  • Bi D et al (2013) The ACCESS coupled model: description, control climate and evaluation. Aust Met Oceanog J (accepted)

  • Boucher O, Halloran P, Burke E, Doutriaux-Boucher M, Jones C, Lowe J, Ringer M, Robertson E, Wu P (2012) Reversibility in an earth system model in response to CO2 concentration changes. Environ Res Lett 7(2):024,013

    Article  Google Scholar 

  • Brayshaw DJ, Woollings T, Vellinga M (2009) Tropical and extratropical responses of the North Atlantic atmospheric circulation to a sustained weakening of the MOC. J Clim 22:3146–3155

    Article  Google Scholar 

  • Collins W, Bitz C, Blackmon M, Bonan G, Bretherton C, Carton J, Chang P, Doney S, Hack J, Henderson T et al (2006) The community climate system model version 3 (CCSM3). J Clim 19(11):2122–2143

    Article  Google Scholar 

  • Collins W, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones C, Joshi M, Liddicoat S et al (2011) Development and evaluation of an earth-system model—HadGEM2. Geosci Model Dev Discuss 4:997–1062

    Article  Google Scholar 

  • Danabasoglu G, Bates S, Briegleb B, Jayne S, Jochum M, Large W, Peacock S, Yeager S (2012) The CCSM4 ocean component. J Clim 25(5):1361–1389

    Article  Google Scholar 

  • De Boer AM, Gnanadesikan A, Edwards NR, Watson AJ (2010) Meridional density gradients do not control the Atlantic overturning circulation. J Phys Oceanogr 40:368–380. doi:10.1175/2009JPO4200.1

    Article  Google Scholar 

  • Delworth T, Broccoli A, Rosati A, Stouffer R, Balaji V, Beesley J, Cooke W, Dixon K, Dunne J, Dunne K et al (2006) GFDL’s CM2 global coupled climate models. Part I: formulation and simulation characteristics. J Clim 19(5):643–674

    Article  Google Scholar 

  • Dufresne J, Foujols M, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R et al (2013) Climate change projections using the IPSL-CM5 earth system model: from CMIP3 to CMIP5. Clim Dyn 40:2123–2165

    Google Scholar 

  • Durack P, Wijffels S (2010) Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J Clim 23(16):4342–4362

    Article  Google Scholar 

  • Durack P, Wijffels S, Matear R (2012) Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336(6080):455–458

    Article  Google Scholar 

  • Gent P, McWilliams J (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20(1):150–155

    Article  Google Scholar 

  • Gent P, Yeager S, Neale R, Levis S, Bailey D (2010) Improvements in a half degree atmosphere/land version of the CCSM. Clim Dyn 34(6):819–833

    Article  Google Scholar 

  • Gent P, Danabasoglu G, Donner L, Holland M, Hunke E, Jayne S, Lawrence D, Neale R, Rasch P, Vertenstein M et al (2011) The community climate system model version 4. J Clim 24(19):4973–4991

    Article  Google Scholar 

  • Gordon C, Cooper C, Senior C, Banks H, Gregory J, Johns T, Mitchell J, Wood R (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–16

    Article  Google Scholar 

  • Jungclaus JH, Fischer N, Haak H, Lohmann K, Marotzke J, Matei D, Mikolajewicz U, Notz D, von Storch JS (2013) Characteristics of the ocean simulations in MPIOM, the ocean component of the MPI-Earth system model. J Adv Model Earth Syst. doi:10.1002/jame.20023

  • Held I, Soden B (2006) Robust responses of the hydrological cycle to global warming. J Clim 19(21):5686–5699

    Article  Google Scholar 

  • Jacob D, Goettel H, Jungclaus J, Muskulus M, Podzun R, Marotzke J (2005) Slowdown of the thermohaline circulation causes enhanced maritime climate influence and snow cover over Europe. Geophys Res Lett 32. doi:10.1029/2005GL023286

  • Johns T, Gregory J, Ingram W, Johnson C, Jones A, Lowe J, Mitchell J, Roberts D, Sexton D, Stevenson D et al (2003) Anthropogenic climate change for 1860 to 2100 simulated with the hadcm3 model under updated emissions scenarios. Clim Dyn 20(6):583–612

    Google Scholar 

  • Lackner K (2003) A guide to CO2 sequestration. Science 300(5626):1677–1678

    Article  Google Scholar 

  • Levermann A, Griesel A, Hofmann M, Montoya M, Rahmstorf S (2005) Dynamic sea level changes following changes in the thermohaline circulation. Clim Dyn 24:347–354

    Article  Google Scholar 

  • Liu Z, Otto-Bliesner BL, He F, Brady EC, Tomas R, Clark PU, Carlson AE, Lynch-Stieglitz J, Curry W, Brook E, Erickson D, Jacob R, Kutzbach J, Cheng J (2009) Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science 325(5938):310–314. doi:10.1126/science.1171041

    Article  Google Scholar 

  • Martin G, Bellouin N, Collins WJ, Culverwell ID, Halloran PR, Hardiman SC, Hinton TJ, Jones CD, McDonald RE, McLaren AJ et al (2011) The HadGEM2 family of met office unified model climate configurations. Geosci Model Dev 4(3):723–757. doi:10.5194/gmd-4-723-2011

    Article  Google Scholar 

  • Mizuta R et al (2012) Climate simulations using MRI-AGCM3.2 with 20-km grid. J Meteorol Soc Jpn 90A:233–258

    Article  Google Scholar 

  • Nakashiki N, Kim D, Bryan F, Yoshida Y, Tsumune D, Maruyama K, Kitabata H (2006) Recovery of thermohaline circulation under CO2 stabilization and overshoot scenarios. Ocean Model 15(3):200–217

    Article  Google Scholar 

  • Pope V, Gallani M, Rowntree P, Stratton R (2000) The impact of new physical parameterizations in the Hadley Centre climate model: HadAM3. Clim Dyn 16:123–146

    Article  Google Scholar 

  • Roberts M, Marsh R, New A, Wood R (1996) An intercomparison of a Bryan-Cox type ocean model and an isopycnic ocean model. Part I: the subpolar gyre and high-latitude processes. J Phys Oceanogr 26(8):1495–1527

    Article  Google Scholar 

  • Roberts C, Garry F, Jackson L (2013) A multi-model study of sea surface temperature and sub-surface density fingerprints of the Atlantic meridional overturning circulation. J Clim (accepted)

  • Rotstayn L, Jeffrey S, Collier M, Dravitzki S, Hirst A, Syktus J, Wong K (2012) Aerosol-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations. Atmos Chem Phys Discuss 12:5107–5188

    Article  Google Scholar 

  • Samanta A, Anderson B, Ganguly S, Knyazikhin Y, Nemani R, Myneni R (2010) Physical climate response to a reduction of anthropogenic climate forcing. Earth Interact 14(7):1–11

    Article  Google Scholar 

  • Smith R (2012) The FAMOUS climate model (versions XFXWB and XFHCC): description update to version XDBUA. Geosci Model Dev 5:269–276

    Article  Google Scholar 

  • Smith R, Gregory J (2009) A study of the sensitivity of ocean overturning circulation and climate to freshwater input in different regions of the North Atlantic. Geophys Res Lett 36(15):L15,701

    Article  Google Scholar 

  • Smith R, Gregory J, Osprey A (2008) A description of the FAMOUS (version XDBUA) climate model and control run. Geosci Model Dev 1:53–68. doi:10.5194/gmd-1-53-2008

    Article  Google Scholar 

  • Stouffer RJ, Yin J, Gregory JM, Dixon KW, Spelman MJ, Hurlin W, Weaver AJ, Eby M, Flato GM, Hasumi H, Hu A, Jungclaus JH, Kamenkovich V, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Peltier WR, Robitaille DY, Sokolov A, Vettoretti G, Weber SL (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19: 1365–1387

    Article  Google Scholar 

  • Thorpe R, Gregory J, Johns T, Wood R, Mitchell J (2001) Mechanisms determining the Atlantic thermohaline circulation response to greenhouse gas forcing in a non-flux-adjusted coupled climate model. J Clim 14:3102–3116

    Article  Google Scholar 

  • Vellinga M (1998) Multiple equilibria in ocean models as a side effect of convective adjustment. J Phys Oceanogr 28(4):621–633

    Article  Google Scholar 

  • Vellinga M, Wood R (2002) Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim Change 54:251–267

    Article  Google Scholar 

  • Vellinga M, Wood R (2008) Impacts of thermohaline circulation shutdown in the twenty-first century. Clim Change 91(1):43–63

    Article  Google Scholar 

  • Voldoire A, Sanchez-Gomez E, Salas y Mélia D, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M et al (2012) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn. doi:10.1007/s00382-011-1259-y

  • von Salzen K et al (2013) The Canadian fourth generation atmospheric global climate model (CanAM4): simulation of clouds and precipitation and their responses to short-term climate variability. Atmos Ocean 51. doi:10.1080/07055900.2012.755610

  • Watanabe M, Suzuki T, O’ishi R, Komuro Y, Watanabe S, Emori S, Takemura T, Chikira M, Ogura T, Sekiguchi M et al (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23(23):6312–6335

    Article  Google Scholar 

  • Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M, Yokohata T, Ise T, Sato H, Kato E, Takata K, Emori S, Kawamiya M (2011) MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci Model Dev 4(4):845–872 doi:10.5194/gmd-4-845-2011

    Article  Google Scholar 

  • Weaver A, Sedláček J, Eby M, Alexander K, Crespin E, Fichefet T, Philippon-Berthier G, Joos F, Kawamiya M, Matsumoto K et al (2012) Stability of the atlantic meridional overturning circulation: a model intercomparison. Geophys Res Lett 39(20):L20,709

    Article  Google Scholar 

  • Wu P, Wood R, Ridley J, Lowe J (2010) Temporary acceleration of the hydrological cycle in response to a CO2 rampdown. Geophys Res Lett 37(12):L12,705

    Google Scholar 

  • Wu P, Jackson L, Pardaens A, Schaller N (2011) Extended warming of the northern high latitudes due to an overshoot of the Atlantic meridional overturning circulation. Geophys Res Lett 38(24):L24,704

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). The FAMOUS experiments were integrated on HECToR, the UK National Supercomputing resource. Advice on the CCSM3.5 and CESM experiments from J. Sedláček is gratefully acknowledged. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 2 of this paper) for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We would also like to thank J. Kettleborough, I. Edmond and J. Gregory for developing tools and code for the downloading, archiving and analysis of CMIP5 data at the Met Office. Finally we wish to thank two anonymous reviewers for their comments which helped to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Jackson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jackson, L.C., Schaller, N., Smith, R.S. et al. Response of the Atlantic meridional overturning circulation to a reversal of greenhouse gas increases. Clim Dyn 42, 3323–3336 (2014). https://doi.org/10.1007/s00382-013-1842-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1842-5

Keywords

  • Climate
  • AMOC
  • GCM