Climate Dynamics

, Volume 42, Issue 5–6, pp 1553–1568 | Cite as

Precipitation over eastern South America and the South Atlantic Sea surface temperature during neutral ENSO periods

  • Rodrigo J. BombardiEmail author
  • Leila M. V. Carvalho
  • Charles Jones
  • Michelle S. Reboita


The dominant mode of coupled variability over the South Atlantic Ocean is known as “South Atlantic Dipole” (SAD) and is characterized by a dipole in sea surface temperature (SST) anomalies with centers over the tropical and the extratropical South Atlantic. Previous studies have shown that variations in SST related to SAD modulate large-scale patterns of precipitation over the Atlantic Ocean. Here we show that variations in the South Atlantic SST are associated with changes in daily precipitation over eastern South America. Rain gauge precipitation, satellite derived sea surface temperature and reanalysis data are used to investigate the variability of the subtropical and tropical South Atlantic and impacts on precipitation. SAD phases are assessed by performing Singular value decomposition analysis of sea level pressure and SST anomalies. We show that during neutral El Niño Southern Oscillation events, SAD plays an important role in modulating cyclogenesis and the characteristics of the South Atlantic Convergence Zone. Positive SST anomalies over the extratropical South Atlantic (SAD negative phase) are related to increased cyclogenesis near southeast Brazil as well as the migration of extratropical cyclones further north. As a consequence, these systems organize convection and increase precipitation over eastern South America.


SST Precipitation South Atlantic Dipole South America ENSO Cyclones 



We thank the anonymous reviewers for their valuable comments and suggestions for the improvement of this manuscript. We thank the support of NOAA Climate Program Office (NA07OAR4310211 and NA10OAR4310170). This research was conducted under the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS); sub-contract with the International Potato Center (SB120184). L. Carvalho thanks FAPESP (2008/58101-9). NCEP Reanalysis data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at We thank NASA for making available the MERRA reanalysis, NOAA for making available GPCP and the SST data, and ANA for making available the precipitation station data. We also thank Dr. Brant Liebmann and Dr. David Allured for providing the precipitation station data and Dr. Hodges for his help with the spherical kernel technique.


  1. Anderson TW, Finn JD (1996) The new statistical analysis of data. Springer, New York, p 712CrossRefGoogle Scholar
  2. Bombardi RJ, Carvalho LMV (2009) IPCC global coupled model simulations of the South America monsoon system. Climate Dyn 33:893–916. doi: 10.1007/s00382-008-0488-1 Google Scholar
  3. Bombardi RJ, Carvalho LMV (2011) The South Atlantic dipole and variations in the characteristics of the South American Monsoon in the WCRP-CMIP3 multi-model simulations. Climate Dyn 36:2091–2102. doi: 10.1007/s00382-010-0836-9 Google Scholar
  4. Cardoso ADO, Silva Dias PL (2004) Atlantic and Pacific variability and temperature during the winter season in Sao Paulo City. Revista Brasileira de Meteorologia 19:113–122Google Scholar
  5. Carvalho LMV (2002) Intraseasonal large-scale circulations and mesoscale convective activity in tropical South America during the TRMM-LBA campaign. J Geophys Res 107:8042. doi: 10.1029/2001JD000745 Google Scholar
  6. Carvalho LMV, Jones C, Liebmann B (2002) Extreme precipitation events in southeastern South America and large-scale convective patterns in the South Atlantic Convergence Zone. J Climate 15:2377–2394. doi: 10.1175/1520-0442(2002)015<2377:EPEISS>2.0.CO;2 Google Scholar
  7. Carvalho LMV, Jones C, Liebmann B (2004) The South atlantic Convergence Zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J Climate 17:88–108. doi: 10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2 Google Scholar
  8. Carvalho LMV, Jones C, Ambrizzi T (2005) Opposite phases of the Antarctic oscillation and relationships with intraseasonal to interannual activity in the tropics during the Austral Summer. J Climate 18:702–718. doi: 10.1175/JCLI-3284.1 Google Scholar
  9. Carvalho LMV, Silva AE, Jones C, Liebmann B, Silva Dias PL, Rocha HR (2010) Moisture transport and intraseasonal variability in the South America monsoon system. Climate Dyn 36:1865–1880. doi: 10.1007/s00382-010-0806-2 Google Scholar
  10. Chaves RR, Nobre P (2004) Interactions between sea surface temperature over the South Atlantic Ocean and the South Atlantic Convergence Zone. Geophys Res Lett 31:L03204. doi: 10.1029/2003GL018647
  11. Da Silva AE, De Carvalho LMV (2007) Large-scale index for South America Monsoon (LISAM). Atmosph Sci Lett 8:51–57. doi: 10.1002/asl.150 Google Scholar
  12. De Almeida RAF, Nobre P, Haarsma RJ, Campos EJD (2007) Negative ocean-atmosphere feedback in the South Atlantic Convergence Zone. Geophys Res Lett 34:L18809. doi: 10.1029/2007GL030401
  13. Doyle ME, Barros VR (2002) Midsummer low-level circulation and precipitation in subtropical South America and related sea surface temperature anomalies in the South Atlantic. J Clim 15:3394–3411CrossRefGoogle Scholar
  14. Gan MA, Rao VB (1991) Surface Cyclogenesis over South America. Mon Weather Rev 119:1293–1302. doi: 10.1175/1520-0493(1991)119<1293:SCOSA>2.0.CO;2
  15. Gan MA, Kousky VE, Ropelewski CF (2004) The South America Monsoon Circulation and Its Relationship to Rainfall over West-Central Brazil. J Climate 17:47–66. doi: 10.1175/1520-0442(2004)017<0047:TSAMCA>2.0.CO;2 Google Scholar
  16. Grimm AM, Barros VR, Doyle ME (2000) Climate variability in Southern South America Associated with El Niño and La Niña Events. J Climate 13:35–58. doi: 10.1175/1520-0442(2000)013<0035:CVISSA>2.0.CO;2 Google Scholar
  17. Grimm AM, Pal JS, Giorgi F (2007) Connection between Spring conditions and peak summer monsoon rainfall in South America: role of soil moisture, surface temperature, and topography in Eastern Brazil. J Climate 20:5929–5945. doi: 10.1175/2007JCLI1684.1 Google Scholar
  18. Haarsma RJ (2003) Atmospheric response to South Atlantic SST dipole. Geophys Res Lett 30:1864. doi: 10.1029/2003GL017829 Google Scholar
  19. Haarsma RJ, Campos EJD, Hazeleger W, Severijns C, Piola AR, Molteni F (2005) Dominant modes of variability in the South Atlantic: a study with a hierarchy of ocean–atmosphere models. J Climate 18:1719–1735. doi: 10.1175/JCLI3370.1 Google Scholar
  20. Hartmann DL, Michelsen ML (1989) Intraseasonal peridiocities in Indian rainfall. J Atmos Sci 46:2838–2862. Available at: Google Scholar
  21. Herdies DL (2002) Moisture budget of the bimodal pattern of the summer circulation over South America. J Geophys Res 107:8075. doi: 10.1029/2001JD000997 Google Scholar
  22. Hodges KI (1996) Spherical nonparametric estimators applied to the UGAMP model integration for AMIP. Mon Weather Rev 124:2914–2932. doi: 10.1175/1520-0493(1996)124<2914:SNEATT>2.0.CO;2
  23. Hoskins BJ, Hodges KI (2005) A new perspective on southern hemisphere storm tracks. J Climate 18:4108–4129. doi: 10.1175/JCLI3570.1 Google Scholar
  24. Jones C, Carvalho LMV (2002) Active and break phases in the South American Monsoon System. J Climate 15:905–914. doi: 10.1175/1520-0442(2002)015<0905:AABPIT>2.0.CO;2 Google Scholar
  25. Kalnay E, Kanamitsu M, Kistler R et al. (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 Google Scholar
  26. Kayano MT, Valéria Andreoli R, Ferreira de Souza RA (2011) Evolving anomalous SST patterns leading to ENSO extremes: relations between the tropical Pacific and Atlantic Oceans and the influence on the South American rainfall. Int J Climatol 31:1119–1134. doi: 10.1002/joc.2135
  27. Kayano MT, Andreoli R V., Ferreira de Souza R (2012) Relations between ENSO and the South Atlantic SST modes and their effects on the South American rainfall. Int J Climatol. n/a–n/a. doi: 10.1002/joc.3569
  28. Kodama Y (1992) Large-Scale common features of subtropical precipitation Zones (the baiu Frontal Zone, the SPCZ, and the SACZ) Part I: characteristics of Subtropical Frontal Zones. J Meteorol Soc Jpn 70:813–836Google Scholar
  29. Kodama Y (1993) Large-Scale common features of subtropical precipitation zones (the baiu Frontal Zone, the SPCZ, and the SACZ) Part II: conditions of the circulations for generating the STCZs. J Meteorol Soc Jpn 71:581–610Google Scholar
  30. Liebmann B, Kiladis GN, Marengo J, Ambrizzi T, Glick JD (1999) Submonthly convective variability over South America and the South Atlantic Convergence Zone. J Climate 12:1877–1891. doi: 10.1175/1520-0442(1999)012<1877:SCVOSA>2.0.CO;2 Google Scholar
  31. Liebmann B, Jones C, De Carvalho LM V. (2001) Interannual variability of daily extreme precipitation events in the state of São Paulo, Brazil. J Clim 14:208–218. doi: 10.1175/1520-0442(2001)014<0208:IVODEP>2.0.CO;2
  32. Liebmann B, Kiladis GN, Vera CS, Saulo AC, Carvalho LM V. (2004) Subseasonal variations of rainfall in South America in the Vicinity of the low-level Jet East of the Andes and Comparison to Those in the South Atlantic Convergence Zone. J Climate 17:3829–3842. doi: 10.1175/1520-0442(2004)017<3829:SVORIS>2.0.CO;2
  33. Ma H-Y, Ji X, Neelin JD, Mechoso CR (2011) Mechanisms for precipitation variability of the Eastern Brazil/SACZ convective margin. J Climate 24:3445–3456. doi: 10.1175/2011JCLI4070.1 Google Scholar
  34. Marengo JA, Soares WR, Saulo C, Nicolini M (2004) Climatology of the Low-Level Jet East of the Andes as derived from the NCEP–NCAR Reanalyses: Characteristics and Temporal Variability. J Climate 17:2261–2280. doi: 10.1175/1520-0442(2004)017<2261:COTLJE>2.0.CO;2 Google Scholar
  35. Morioka Y, Tozuka T, Yamagata T (2011) On the growth and decay of the Subtropical Dipole Mode in the South Atlantic. J Climate 24:5538–5554. doi: 10.1175/2011JCLI4010.1 Google Scholar
  36. Moura AD, Shukla J (1981) On the dynamics of droughts in Northeast Brazil: observations, theory and numerical experiments with a general circulation model. J Atmos Sci 38:2653–2675. doi: 10.1175/1520-0469(1981)038<2653:OTDODI>2.0.CO;2
  37. Murray RJ, Simmonds I (1991a) A numerical scheme for tracking cyclone centres from digital data Part I: development and operation of the scheme. Aust Meteorol Mag 39:155–166Google Scholar
  38. Murray RJ, Simmonds I (1991b) A numerical scheme for tracking cyclone centres from digital data Part II: application to January and July general circulation model simulations. Aust Meteorol Mag 39:167–180Google Scholar
  39. Muza MN, Carvalho LM V., Jones C, Liebmann B (2009) Intraseasonal and interannual variability of extreme dry and wet events over Southeastern South America and the Subtropical Atlantic during Austral Summer. J Climate 22:1682–1699. doi: 10.1175/2008JCLI2257.1 Google Scholar
  40. Nnamchi HC, Li J, Anyadike RNC (2011) Does a dipole mode really exist in the South Atlantic Ocean? J Geophys Res 116: D15104. doi: 10.1029/2010JD015579
  41. Pezza AB, Ambrizzi T (2003) Variability of southern hemisphere cyclone and anticyclone behavior: further analysis. J Climate 16:1075–1083. doi: 10.1175/1520-0442(2003)016<1075:VOSHCA>2.0.CO;2 Google Scholar
  42. Reboita MS (2008) Extratropical cyclones over the South Atlantic Ocean: climatic simulation and sensibility experiments. University of Sao Paulo, Sao Paulo, p 294Google Scholar
  43. Reboita MS, Ambrizzi T, Rocha RP da (2009) Relationship between the southern annular mode and southern hemisphere atmospheric systems. Revista Brasileira de Meteorol 24:48–55.doi: 10.1590/S0102-77862009000100005 Google Scholar
  44. Reboita MS, Da Rocha RP, Ambrizzi T, Sugahara S (2010) South Atlantic Ocean cyclogenesis climatology simulated by regional climate model (RegCM3). Climate Dyn 35:1331–1347. doi: 10.1007/s00382-009-0668-7 Google Scholar
  45. Renwick JA (2005) Persistent positive anomalies in the southern hemisphere circulation. Mon Weather Rev 133:977–988. Available at: doi: 10.1175/MWR2900.1 Google Scholar
  46. Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Climate 20:5473–5496. doi: 10.1175/2007JCLI1824.1 Google Scholar
  47. Rienecker MM, Suarez MJ, Gelaro R et al. (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Climate 24:3624–3648. doi: 10.1175/JCLI-D-11-00015.1 Google Scholar
  48. Robertson AW, Mechoso CR (2000) Interannual and interdecadal variability of the South Atlantic Convergence Zone. Mon Weather Rev 128:2947–2957. doi: 10.1175/1520-0493(2000)128<2947:IAIVOT>2.0.CO;2 Google Scholar
  49. Robertson AW, Farrara JD, Mechoso CR (2003) Simulations of the atmospheric response to South Atlantic Sea surface temperature anomalies. J Climate 16:2540–2551. doi: 10.1175/1520-0442(2003)016<2540:SOTART>2.0.CO;2 Google Scholar
  50. Rodrigues RR, Haarsma RJ, Campos EJD, Ambrizzi T (2011) The impacts of inter–El Niño variability on the tropical Atlantic and Northeast Brazil Climate. J Climate 24:3402–3422. doi: 10.1175/2011JCLI3983.1 Google Scholar
  51. Saravanan R, Chang P (2000) Interaction between Tropical Atlantic Variability and El Niño–Southern Oscillation. J Climate 13: 2177–2194. doi: 10.1175/1520-0442(2000)013<2177:IBTAVA>2.0.CO;2 Google Scholar
  52. Simmonds I, Keay K (2000) Mean Southern hemisphere extratropical cyclone behavior in the 40-Year NCEP–NCAR Reanalysis. J Climate 13:873–885. doi: 10.1175/1520-0442(2000)013<0873:MSHECB>2.0.CO;2 Google Scholar
  53. Sinclair MR (1996) A climatology of anticyclones and blocking for the Southern Hemisphere. Mon Weather Rev 124:245–264. doi: 10.1175/1520-0493(1996)124<0245:ACOAAB>2.0.CO;2
  54. Sterl A, Hazeleger W (2003) Coupled variability and air-sea interaction in the South Atlantic Ocean. Climate Dyn 21:559–571. doi: 10.1007/s00382-003-0348-y Google Scholar
  55. Taschetto AS, Wainer I (2008) The impact of the subtropical South Atlantic SST on South American precipitation. Ann Geophys 26:3457–3476. doi: 10.5194/angeo-26-3457-2008 Google Scholar
  56. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. bulletin of the American Meteorological Society 79:61–78. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
  57. Trenberth KE, Fasullo JT, Mackaro J (2011) Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J Climate 24:4907–4924. doi: 10.1175/2011JCLI4171.1 Google Scholar
  58. Trzaska S, Robertson AW, Farrara JD, Mechoso CR (2007) South Atlantic variability arising from air–sea coupling: local mechanisms and tropical–subtropical interactions. J Climate 20:3345–3365. doi: 10.1175/JCLI4114.1 Google Scholar
  59. Uvo CB, Repelli CA, Zebiak SE, Kushnir Y (1998) The relationships between Tropical Pacific and Atlantic SST and Northeast Brazil monthly precipitation. J Climate 11:551–562. doi: 10.1175/1520-0442(1998)011<0551:TRBTPA>2.0.CO;2 Google Scholar
  60. Venegas SA, Mysak LA, Straub DN (1997) Atmosphere–ocean coupled variability in the South Atlantic. J Climate 10:2904–2920. doi: 10.1175/1520-0442(1997)010<2904:AOCVIT>2.0.CO;2 Google Scholar
  61. Wilks DS (2006) Statistical methods in the atmospheric sciences. Academic Press, London, p 648Google Scholar
  62. Xie P, Janowiak JE, Arkin PA et al. (2003) GPCP pentad precipitation analyses: an experimental dataset based on gauge observations and satellite estimates. J Climate 16:2197–2214. doi: 10.1175/2769.1 Google Scholar
  63. Zhou J, Lau K-M (1998) Does a monsoon climate exist over South America? J Climate 11:1020–1040. doi: 10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rodrigo J. Bombardi
    • 1
    Email author
  • Leila M. V. Carvalho
    • 1
    • 2
  • Charles Jones
    • 2
  • Michelle S. Reboita
    • 3
  1. 1.Department of GeographyUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Earth Research InstituteUniversity of CaliforniaSanta BarbaraUSA
  3. 3.Natural Resources InstituteFederal University of ItajubáItajubáBrazil

Personalised recommendations