Climate Dynamics

, Volume 42, Issue 5–6, pp 1309–1324 | Cite as

Soil moisture-temperature feedbacks at meso-scale during summer heat waves over Western Europe

  • Marc StéfanonEmail author
  • Philippe Drobinski
  • Fabio D’Andrea
  • Cindy Lebeaupin-Brossier
  • Sophie Bastin


This paper investigates the impact of soil moisture-temperature feedback during heatwaves occurring over France between 1989 and 2008. Two simulations of the weather research and forecasting regional model have been analysed, with two different land-surface models. One resolves the hydrology and is able to simulate summer dryness, while the other prescribes constant and high soil moisture and hence no soil moisture deficit. The sensitivity analysis conducted for all heatwave episodes highlights different soil moisture-temperature responses (1) over low-elevation plains, (2) over mountains and (3) over coastal regions. In the plains, soil moisture deficit induces less evapotranspiration and higher sensible heat flux. This has the effect of heating the planetary boundary layer and at the same time of creating a general condition of higher convective instability and a slight increase of shallow cloud cover. A positive feedback is created which increases the temperature anomaly during the heatwaves. In mountainous regions, enhanced heat fluxes over dry soil reinforce upslope winds producing strong vertical motion over the mountain slope, first triggered by thermal convection. This, jointly to the instability conditions, favors convection triggering and produces clouds and precipitation over the mountains, reducing the temperature anomaly. In coastal regions, dry soil enhances land/sea thermal contrast, strengthening sea-breeze circulation and moist cold marine air advection. This damps the magnitude of the heatwave temperature anomaly in coastal areas, expecially near the Mediterranean coast. Hence, along with heating in the plains, soil dryness can also have a significant cooling effect over mountains and coastal regions due to meso-scale circulations.


Heatwaves Droughts Mediterranean climate HyMeX MED-CORDEX Hydrological cycle Meso-scale circulations 



This work is a contribution to the MORCE-MED and Humboldt projects funded by the GIS (Groupement d’Intérêt Scientifique) "Climat, Environnement et Société", with granted access to the HPC resources of IDRIS (under allocation i2011010227). This work also contributes to the HyMeX program (HYdrological cycle in The Mediterranean EXperiment - Drobinski et al (2010); Drobinski et al (2012)- through INSU-MISTRALS support, the Med-CORDEX program (A COordinated Regional climate Downscaling EXperiment - Mediterranean region, and the GEWEX program of the World Climate Research Program (WCRP).


  1. Bastin S, Drobinski P (2005) Temperature and wind velocity oscillations along a gentle slope during sea-breeze events. Bound-Layer Meteorol 114:573–594CrossRefGoogle Scholar
  2. Bastin S, Drobinski P (2006) Sea-breeze-induced mass transport over complex terrain in south-eastern france: a case-study. Q J R Meteorol Soc 132:405–423CrossRefGoogle Scholar
  3. Bastin S, Champollion C, Bock O, Drobinski P, Masson F (2005a) On the use of gps tomography to investigate water vapor variability during a mistral/sea breeze event in southeastern france. Geophys Res Lett 32:L05808. doi: 10.1029/2004GL021907 CrossRefGoogle Scholar
  4. Bastin S, Drobinski P, Dabas A, Delville P, Reitebuch O, Werner C (2005b) Impact of the rhône and durance valleys on sea-breeze circulation in the marseille area. Atmos Res 74:303–328CrossRefGoogle Scholar
  5. Bastin S, Champollion C, Bock O, Drobinski P, Masson F (2007) Diurnal cycle of water vapor as documented by a dense gps network in a coastal area during escompte-iop2. J Appl Meteorol Climatol 46:167–182CrossRefGoogle Scholar
  6. Bechtold P, Bazile E, Guichard F, Mascart P, Richard E (2001) A mass-flux convection scheme for regional and global models. Q J R Meteorol Soc 127:869–886CrossRefGoogle Scholar
  7. Beljaars A, Viterbo P, Miller M, Betts A (1996) The anomalous rainfall over the united states during july 1993: sensitivity to land surface parameterization and soil moisture anomalies. Mon Wea Rev 124:362–383CrossRefGoogle Scholar
  8. Beniston M (2004) The 2003 heat wave in europe: a shape of things to come? An analysis based on swiss climatological data and model simulations. Geophys Res Lett 31:L02202. doi: 10.1029/2003GL018857 CrossRefGoogle Scholar
  9. Betts AK, Ball JH, Beljaars ACM, Miller MJ, Viterbo PA (1996) The land surface-atmosphere interaction: a review based on observational and global modeling perspectives. J Geophys Res 101:7209–7225CrossRefGoogle Scholar
  10. Bleck R, Benjamin SG (1993) Regional weather prediction with a model combining terrain-following and isentropic coordinates. i: model description. Mon Wea Rev 121:1770–1785CrossRefGoogle Scholar
  11. Bradley CM (2003) Effects of soil data resolution on modeling results using a physically based rainfall-runoff model. Master’s thesis, University of Arizona, TucsonGoogle Scholar
  12. Cassou C, Terray L, Phillips AS (2005) Tropical atlantic influence on european heatwaves. J Climate 18:2805–2811CrossRefGoogle Scholar
  13. Chagnon FJF, Bras RL, Wang J (2004) Climatic shift in patterns of shallow clouds over the amazon. Geophys Res Lett 31:1183–1199CrossRefGoogle Scholar
  14. Christensen JH, Christensen OB (2003) Severe summertime flooding in europe. Nat Biotechnol 421:805–806CrossRefGoogle Scholar
  15. Couvreux F, Guichard F, Autsin P, Chen F (2009) Nature of the meso-scale boundary layer height and water-vapor variability observed the 14 June 2002 during the ihop 2002 campaign. Mon Wea Rev 137:414–432CrossRefGoogle Scholar
  16. Couvreux F, Rio C, Guichard F, Lothon M, Canut J, Bouniol D, Gounou A (2012) Initiation of daytime local convection in a semi-arid region analysed with high-resolution simulation and amma observations. Q J R Meteorol Soc 138:56–71CrossRefGoogle Scholar
  17. D’Andrea F, Provenzale A, Vautard R, De Noblet-Decoudré N (2006) Hot and cool summers: multiple equlibria of the continental water cycle. Geophys Res Lett 33:L24,807CrossRefGoogle Scholar
  18. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The era-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597CrossRefGoogle Scholar
  19. Della-Marta PM, Haylock MR, Luterbacher J, Wanner H (2007) Doubled length of western european summer heat waves since 1880. J Geophys Res 112:D15103. doi: 10.1029/2007JD008510 CrossRefGoogle Scholar
  20. Drobinski P, Dubos T (2009) Linear breeze scaling: From large-scale land/sea-breezes to mesoscale inland breezes. Q J R Meteorol Soc 135:1766–1775CrossRefGoogle Scholar
  21. Drobinski P, Flamant C, Dusek J, Flamant P, Pelon J (2001) Observational evidence and modeling of an internal hydraulic jump at the atmospheric boundary layer top during a tramontane event. Boundary Layer Meteorol 98:497–515CrossRefGoogle Scholar
  22. Drobinski P, Bastin S, Guénard V, Caccia J, Dabas AM, Delville P, Protat A, Reitebuch O, Werner C (2005) Summer mistral at the exit of the rhône valley. Q J R Meteorol Soc 131:353–375CrossRefGoogle Scholar
  23. Drobinski P, Bastin S, Dabas A, Delville P, Reitebuch O (2006) Variability of three-dimensional sea breeze structure in southern france: observations and evaluation of empirical scaling laws. Ann Geophys 24:1783–1799CrossRefGoogle Scholar
  24. Drobinski P, Ducrocq V, Lionello P, the HyMeX ISSC (2009) Hymex, a potential new CEOP RHP in the mediterranean basin. GEWEX Newslett 19:5–6Google Scholar
  25. Drobinski P, Ducrocq V, Lionello P (2010) Studying the hydrological cycle in the mediterranean. Trans Am Geophys Union (EOS) 91:373CrossRefGoogle Scholar
  26. Drobinski P, Anav A, Lebeaupin Brossier C, Samson G, Stéfanon M, Bastin S, Baklouti M, Béranger K, Beuvier J, Bourdallé-Badie R, Coquart L, D’Andrea F, De Noblet-Ducoudré N, Diaz F, Dutay JC, Ethe C, Foujols AM, Khvorostyanov D, Madec G, Mancip M, Masson S, Menut L, Palmieri J, Polcher J, Turquety S, Valcke S, Viovy N (2012) Model of the regional coupled earth system (morce): application to process and climate studies in vulnerable regions. Environ Model Soft 35:1–18CrossRefGoogle Scholar
  27. Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107CrossRefGoogle Scholar
  28. Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, O ML (2000) Climate extremes: observations, modeling, and impacts. Sci Agric 289:2068–2074CrossRefGoogle Scholar
  29. Eckel T (2002) Perturbing mm5 moisture availability for ensemble forecasting. Technical Report, University of WashingtonGoogle Scholar
  30. Ek MB, Holtslag AAM (2004) Influence of soil moisture on boundary layer cloud development. J Hydrometeor 5:86–89CrossRefGoogle Scholar
  31. Findell KL, Eltahir EAB (2003) Atmospheric controls on soil moisture boundary layer interactions. part i: framework development. J Hydrometeorol 4:552–569CrossRefGoogle Scholar
  32. Fink AH, Bruecher T, Leckebusch GC, Krueger A, Pinto JG, Ulbrich U (2004) The 2003 european summer heatwaves and drought-synopstic diagnosis and impacts. Weather 59:209–216CrossRefGoogle Scholar
  33. Fischer EM, Seneviratne SI, Lüthi D, Schär C (2007a) Contribution of land-atmosphere coupling to recent European summer heat waves. Geophys Res Lett 34:L06707. doi: 10.1029/2006GL029068 Google Scholar
  34. Fischer EM, Seneviratne SI, Vidale PL, Lüthi D, Schär C (2007b) Soil moisture–atmosphere interactions during the 2003 european summer heat wave. J Clim 20:5081–5099CrossRefGoogle Scholar
  35. Fouillet A, Rey G, Laurent F, Pavillon G, Bellec S, Guihenneuc-Jouyaux C, Clavel J, Jougla E, Hémon D (2006) Excess mortality related to the august 2003 heat wave in France. Int Arch Occup Environ Health 80:16–24CrossRefGoogle Scholar
  36. Gentine P, Holtslag A, D’Andrea F, Ek M (2012) Surface and atmospheric controls on moist convection onset over land. J Hydrometeor (submitted)Google Scholar
  37. Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the cordex framework. WMO Bull 58:175–183Google Scholar
  38. Guénard V, Drobinski P, Caccia J, Campistron B, Bénech B (2005) An observational study of the mesoscale mistral dynamics. Boundary Layer Meteorol 115:263–288CrossRefGoogle Scholar
  39. Guénard V, Drobinski P, Caccia J, Tedeschi G, Currier P (2006) Dynamics of the map iop-15 severe mistral event: observations and high-resolution numerical simulations. Q J R Meteorol Soc 132:757–778CrossRefGoogle Scholar
  40. Guichard F, Petch JC, Redelsperger JL, Bechtold P, Chaboureau JP, Cheinet S, Grabowski W, Grenier H, Jones CG, Köhler M, Piriou JM, Tailleux R, Tomasini M (2004) Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Q J R Meteorol Soc 130:3139–3172CrossRefGoogle Scholar
  41. Guichard F, Kergoat L, Mougin E, Timouk F, Baup F, Hiernaux P, Lavenu F (2009) Surface thermodynamics and radiative budget in the sahelian gourma: seasonal and diurnal cycles. J Hydrology 375:161–177CrossRefGoogle Scholar
  42. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119CrossRefGoogle Scholar
  43. Hohenegger C, Brockhaus P, Bretherton CS, Schär C (2009) The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J Climate 22:5003–5020CrossRefGoogle Scholar
  44. Hong SY, Pan HL (1996) Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Monthly Wea Rev 124(10):2322–2339CrossRefGoogle Scholar
  45. Hong SY, Dudhia J, Chen SH (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Wea Rev 132:103–120CrossRefGoogle Scholar
  46. Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Wea Rev 134(9):2318–2341CrossRefGoogle Scholar
  47. Kain JS (1993) Convective parameterization for mesoscale models : The kain-fritsch scheme. The representation of cumulus convection in numerical models
  48. Kain JS (2004) The kain-fritsch convective parameterization: an update. J Appl Meteorol 43:170–181CrossRefGoogle Scholar
  49. Köppen W (1936) Das geographisca system der klimate. Handbuch der Klimatologie 25:1–44Google Scholar
  50. Lebassi B, Gonzalez J, Fabris D, Maurer E, Miller N, Milesi C, Switzer P, Bornstein R (2009) Observed 1970–2005 cooling of summer daytime temperatures in coastal california. J Clim 22(13):3558–3573CrossRefGoogle Scholar
  51. Mahrt L, Pan HL (1984) A two-layer model of soil hydrology. Bound-Layer Meteor 29:1–20CrossRefGoogle Scholar
  52. Mlawer EJ, Taubnam SJ, Brown PD, J IM, A CS (1997) A validated correlated k-model for the longwave. J Geophys Res 102:1663–1682CrossRefGoogle Scholar
  53. Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib Geophys Inst Acad Sci 151:163–187Google Scholar
  54. Noh Y, Cheon WG, Hong SY, Raasch S (2003) Improvement of the k-profile model for the planetary boundary layer based on large eddy simulation data. Bound-Lay Meteorol 107:401–427CrossRefGoogle Scholar
  55. Omrani H, Drobinski P, Dubos T (2012) Investigation of indiscriminate nudging and predictability in a nested quasi-geostrophic model. Q J R Meteor Soc 138:158–169CrossRefGoogle Scholar
  56. Pal J, Eltahir E (2001) Pathways relating soil moisture conditions to summer rainfall within a model of the land-atmosphere system. J Clim 14:1227–1242CrossRefGoogle Scholar
  57. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-geiger climate classification. Hydrol Earth Syst Sci Discuss 4:439–473CrossRefGoogle Scholar
  58. Philip JR, de Vries DA (1957) Moisture movement in porous materials under temperature gradients. Trans Am Geophys Union (EOS) 38:222–232CrossRefGoogle Scholar
  59. Rabin RM, Stensrud DJ, Stadler S, Wetzel PJ, Gregory M (1990) Observed effects of landscape variability on convective clouds. Bull Am Meteorol Soc 71:272–280CrossRefGoogle Scholar
  60. Raymond D, Wilkening M (1980) Mountain-induced convection under fair weather conditions. J Atmos Sci 37:2693–2706CrossRefGoogle Scholar
  61. Salameh T, Drobinski P, Dubos T (2010) The effect of indiscriminate nudging time on large and small scales in regional climate modelling: Application to the mediterranean basin. Q J R Meteorol Soc 136:170–182CrossRefGoogle Scholar
  62. Santanello Jr JA, Peters-Lidard CD, Kumar SV (2011) Diagnosing the sensitivity of local land-atmosphere coupling via the soil moisture-boundary layer interaction. J Hydrometeorol 12(5):766–786CrossRefGoogle Scholar
  63. Schär C, Lüthi D, Beyerle U, Heise E (1999) The soil–precipitation feedback: a process study with a regional climate model. J Climate 12:722–741CrossRefGoogle Scholar
  64. Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land-atmosphere coupling and climate change in europe. Nat Biotechnol 443:205–209CrossRefGoogle Scholar
  65. Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture-climate interactions in a changing climate: a review. Earth Sci Rev 99:125–161CrossRefGoogle Scholar
  66. Simons A, Uppala S, Dee D, Kobayashi S (2007) Era-interim: new ecmwf reanalysis products from 1989 onwards. ECMWF Newslett 110:25–35Google Scholar
  67. Siqueira M, Katul G, Porporato A (2009) Soil moisture feedbacks on convection triggers: the role of soil-plant hydrodynamics. J Hydrometeorol 10(1):96–112CrossRefGoogle Scholar
  68. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang XY, Wang W, Powers JG (2008) A description of the advanced research wrf version 3. Technical Report, NCARGoogle Scholar
  69. Smirnova TG, Brown JM, Benjamin SG (1997) Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Mon Wea Rev 125:1870–1884CrossRefGoogle Scholar
  70. Smirnova TG, Brown JM, Benjamin SG, Kim D (2000b) Parameterization of cold season processes in the maps land-surface scheme. J Geophys Res 105:4077–4086CrossRefGoogle Scholar
  71. Stauffer D, Seaman N (1990) Use of four-dimensional data assimilation in a limited-area mesoscale model. part i: experiments with synoptic-mesoscale data. Mon Wea Rev 118:1250–1277CrossRefGoogle Scholar
  72. Stéfanon M, D’Andrea F, Drobinski P (2012a) Heatwave classification over europe and the mediterranean region. Environ Res Lett 7(1):014023. doi: 10.1088/1748-9326/7/1/014023 CrossRefGoogle Scholar
  73. Stéfanon M, Drobinski P, D’Andrea F, Noblet-Ducoudré N (2012b) Effects of interactive vegetation phenology on the 2003 summer heat waves. J Geophys Res Atmos (1984–2012) 117(D24)Google Scholar
  74. Tank AMGK, Wijngaard JB, Können GP, Böhm R, Demarée G, Gocheva A, Mileta M, Pashiardis S, Hejkrlik L, Kern-Hansen C, Heino R, Bessemoulin P, Müller-Westermeier G, Tzanakou M, Szalai S, Pálsdóttir T, Fitzgerald D, Rubin S, Capaldo M, Maugeri M, Leitass A, Bukantis A, Aberfeld R, van Engelen AFV, Forland E, Mietus M, Coelho F, Mares C, Razuvaev V, Nieplova E, Cegnar T, López JA, Dahlström B, Moberg A, Kirchhofer W, Ceylan A, Pachaliuk O, Alexander LV, Petrovic P (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European climate assessment. Int J Climatol 22:1441–1453CrossRefGoogle Scholar
  75. Taylor CM, Parker DJ, Harris PP (2007) An observational case study of mesoscale atmospheric circulations induced by soil moisture. Geophys Res Lett 34:L15,801CrossRefGoogle Scholar
  76. Troen I, Mahrt L (1986) A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Boundary-Layer Meteorol 37(1):129–148CrossRefGoogle Scholar
  77. Vautard R, Yiou P, D’Andrea F, de Noblet N, Viovy N, Cassou C, Polcher J, Ciais P, Kageyama M, Fan Y (2007) Summertime european heat and drought waves induced by wintertime mediterranean rainfall deficit. Geophys Res Lett 34:L07711. doi: 10.1029/2006GL028001 CrossRefGoogle Scholar
  78. Wang J, Chagnon FJF, Williams ER, Betts AK, Renno NO, Machado LAT, Bisht G, Konx R, Bras RL (2009) Impact of deforestation in the amazon basin on cloud climatology. Proc Natl Acad Sci 106:3670–3674CrossRefGoogle Scholar
  79. Weissmann M, Braun FJ, Gantner L, Mayr GJ, Rahm S, Reitebuch O (2005) The alpine mountain-plain circulation: airborne Doppler Lidar measurements and numerical simulations. Mon Wea Rev 133:3095–3109CrossRefGoogle Scholar
  80. Westra D, Steeneveld GJ, Holtslag AAM (2012) Some observational evidence for dry soils supporting enhanced high relative humidity at the convective boundary layer top. J Hydrometeor 13:1347–1358CrossRefGoogle Scholar
  81. Zampieri M, D’Andrea F, Vautard R, Ciais P, de Noblet-Ducoudré N, Yiou P (2009) Hot european summers and the role of soil moisture in the propagation of mediterranean drought. J Climate 22:4747–4758CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marc Stéfanon
    • 1
    Email author
  • Philippe Drobinski
    • 1
  • Fabio D’Andrea
    • 1
  • Cindy Lebeaupin-Brossier
    • 2
  • Sophie Bastin
    • 3
  1. 1.Institut Pierre Simon LaplaceLaboratoire de Météorologie Dynamique, CNRS/Ecole Polytechnique/ENS/UPMCPalaiseauFrance
  2. 2.CNRM-GAME, Météo-France and CNRSToulouseFrance
  3. 3.Institut Pierre Simon Laplace, Laboratoire AtmosphèresMilieux, Observations Spatiales, CNRS/UVSQ/UPMCGuyancourtFrance

Personalised recommendations