Skip to main content

Temperature response to future urbanization and climate change

Abstract

This study examines the impact of future urban expansion on local near-surface temperature for Sydney (Australia) using a future climate scenario (A2). The Weather Research and Forecasting model was used to simulate the present (1990–2009) and future (2040–2059) climates of the region at 2-km spatial resolution. The standard land use of the model was replaced with a more accurate dataset that covers the Sydney area. The future simulation incorporates the projected changes in the urban area of Sydney to account for the expected urban expansion. A comparison between areas with projected land use changes and their surroundings was conducted to evaluate how urbanization and global warming will act together and to ascertain their combined effect on the local climate. The analysis of the temperature changes revealed that future urbanization will strongly affect minimum temperature, whereas little impact was detected for maximum temperature. The minimum temperature changes will be noticeable throughout the year. However, during winter and spring these differences will be particularly large and the increases could be double the increase due to global warming alone at 2050. Results indicated that the changes were mostly due to increased heat capacity of urban structures and reduced evaporation in the city environment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  • Argüeso D, Hidalgo-Muñoz JM, Gámiz-Fortis SR et al (2011) Evaluation of WRF parameterizations for climate studies over Southern Spain using a multi-step regionalization. J Clim 24:5633–5651. doi:10.1175/JCLI-D-11-00073.1

    Article  Google Scholar 

  • Argüeso D, Hidalgo-Muñoz JM, Gámiz-Fortis SR et al (2012a) High-resolution projections of mean and extreme precipitation over Spain using the WRF model (2070–2099 versus 1970–1999). J Geophys Res. doi:10.1029/2011JD017399

  • Argüeso D, Hidalgo-Muñoz JM, Gámiz-Fortis SR et al (2012b) Evaluation of WRF Mean and extreme precipitation over spain: present climate (1970–1999). J Clim 25:4883–4897. doi:10.1175/JCLI-D-11-00276.1

    Article  Google Scholar 

  • Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23:1–26. doi:10.1002/joc.859

    Article  Google Scholar 

  • Bornstein RD, Johnson DS (1977) Urban-rural wind velocity differences. Atmos Environ 11:597–604

    Article  Google Scholar 

  • Chen F, Kusaka H, Bornstein R et al (2011) The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems. Int J Climatol 31:273–288. doi:10.1002/joc.2158

    Article  Google Scholar 

  • Childs PP, Raman S (2005) Observations and numerical simulations of urban heat Island and Sea Breeze circulations over New York City. Pure Appl Geophys 162:1955–1980. doi:10.1007/s00024-005-2700-0

    Article  Google Scholar 

  • Chin HNS, Leach MJ, Sugiyama GA et al (2005) Evaluation of an urban canopy parameterization in a mesoscale model using VTMX and URBAN 2000 data. Mon Weather Rev 133:2043–2068

    Article  Google Scholar 

  • Evans JP, McCabe MF (2010) Regional climate simulation over Australia’s Murray-Darling basin: a multitemporal assessment. J Geophys Res 115:D14114. doi:10.1029/2010JD013816

    Article  Google Scholar 

  • Evans JP, McCabe MF (2013) Model resolution impact on regional climate and climate change. Clim Res (accepted)

  • Evans JP, and Westra S (2012) Investigating the mechanisms of diurnal rainfall variability using a regional climate model. J Clim 25:7232–7247

    Article  Google Scholar 

  • Georgescu M, Moustaoui M, Mahalov A, Dudhia J (2011) An alternative explanation of the semiarid urban area “oasis effect”. J Geophys Res 116:D24113. doi:10.1029/2011JD016720

    Article  Google Scholar 

  • Georgescu M, Mahalov A, Moustaoui M (2012a) Seasonal hydroclimatic impacts of Sun Corridor expansion. Environ Res Lett 7:034026. doi:10.1088/1748-9326/7/3/034026

    Article  Google Scholar 

  • Georgescu M, Moustaoui M, Mahalov A, Dudhia J (2012b) Summer-time climate impacts of projected megapolitan expansion in Arizona. Nat Clim change. doi:10.1038/nclimate1656

  • Gordon H, O’Farrel S, Collier M, et al (2010) The CSIRO Mk3.5 Climate Model. CAWCR Technical Report No 021 1–74

  • Grimmond CSB (2006) Progress in measuring and observing the urban atmosphere. Theor Appl Climatol 84:3–22. doi:10.1007/s00704-005-0140-5

    Article  Google Scholar 

  • Grimmond CSB, Oke TR (1999) Heat storage in urban areas: local-scale observations and evaluation of a simple model. J Appl Meteorol 38:922–940

    Article  Google Scholar 

  • Hinkel KM, Nelson FE, Klene AE, Bell JH (2003) The urban heat island in winter at Barrow, Alaska. Int J Climatol 23:1889–1905. doi:10.1002/joc.971

    Article  Google Scholar 

  • Howard L (1833) The climate of London deduced from meteorological observations made in the metropolis and at various places around it. Harvey and Darton, London

    Google Scholar 

  • Janković V, Hebbert M (2012) Hidden climate change—urban meteorology and the scales of real weather. Clim Change 113:23–33. doi:10.1007/s10584-012-0429-1

    Article  Google Scholar 

  • Jin M, Dickinson RE, Zhang D (2005) The footprint of urban areas on global climate as characterized by MODIS. J Clim 18:1551–1565. doi:10.1175/JCLI3334.1

    Article  Google Scholar 

  • Jones DA, Wang W, Fawcett R (2009) High-quality spatial climate data-sets for Australia. Aus Meteorol Oceanographic J 58:233–248

    Google Scholar 

  • Jourdain NC, Marchesiello P, Menkes CE et al (2011) Mesoscale simulation of tropical cyclones in the south pacific: climatology and interannual variability. J Clim 24:3–25

    Article  Google Scholar 

  • Kalnay E, Cai M (2003) Impact of urbanization and land-use change on climate. Nature 423:528–531

    Article  Google Scholar 

  • Kim Y-H, Baik J–J (2002) Maximum urban heat island intensity in Seoul. J Appl Meteorol 41:651–659

    Article  Google Scholar 

  • Kusaka H, Kimura F (2004a) Coupling a single-layer urban canopy model with a simple atmospheric model: impact on urban heat island simulation for an idealized case. J Meteorol Soc Jpn 82:67–80

    Article  Google Scholar 

  • Kusaka H, Kimura F (2004b) Thermal effects of urban canyon structure on the nocturnal heat island: numerical experiment using a mesoscale model coupled with an urban canopy model. J Appl Meteorol 43:1899–1910

    Article  Google Scholar 

  • Kusaka H, Kondo H, Kikeqawa Y, Kimura F (2001) A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Bound-Layer Meteorol 101:329–358

    Article  Google Scholar 

  • Kusaka H, Takata T, Takane Y (2010) Reproducibility of regional climate in central Japan using the 4-km Resolution WRF Model. Sola 6:113–116. doi:10.2151/sola.2010-029

    Article  Google Scholar 

  • Kusaka H, Chen F, Tewari M et al (2012a) Numerical simulation of urban heat island effect by the WRF Model with 4-km grid increment: an inter-comparison study between the urban canopy model and slab model. J Meteorol Soc Jpn 90B:33–45. doi:10.2151/jmsj.2012-B03

    Article  Google Scholar 

  • Kusaka H, Hara M, Takane Y (2012b) Urban climate projection by the WRF model at 3-km horizontal grid increment: dynamical downscaling and predicting heat stress in the 2070’s August for Tokyo, Osaka, and Nagoya Metropolises. J Meteorol Soc Jpn 90B:47–63. doi:10.2151/jmsj.2012-B04

    Article  Google Scholar 

  • Lee DO (1979) The influence of atmospheric stability and the urban heat island on urban-rural wind speed differences. Atmos Environ (1967) 13:1175–1180

    Google Scholar 

  • Lynn BH, Carlson TN, Rosenzweig C et al (2009) A modification to the NOAH LSM to simulate heat mitigation strategies in the New York City Metropolitan Area. J Appl Met Clim 48:199–216. doi:10.1175/2008JAMC1774.1

    Article  Google Scholar 

  • Masson V (2006) Urban surface modeling and the meso-scale impact of cities. Theor Appl Climatol 84:35–45. doi:10.1007/s00704-005-0142-3

    Article  Google Scholar 

  • McCarthy MP, Best MJ, Betts RA (2010) Climate change in cities due to global warming and urban effects. Geophys Res Lett 37:L09705. doi:10.1029/2010GL042845

    Google Scholar 

  • Memon RA, Leung DYC, Liu C-H (2009) An investigation of urban heat island intensity (UHII) as an indicator of urban heating. Atmos Res 94:491–500. doi:10.1016/j.atmosres.2009.07.006

    Article  Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G et al (2000) IPCC Special Report on Emissions Scenarios. Cambridge University Press, Cambridge

  • Oke TR (1982) The energetic basis of the urban heat island. Q J Roy Meteor Soc 108:1–24

    Google Scholar 

  • Perkins SE, Pitman AJ, Holbrook NJ, McAneney J (2007) Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J Clim 20:4356–4376

    Article  Google Scholar 

  • Piani C, Haerter J, Coppola E (2010) Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Climatol 99:187–192

    Article  Google Scholar 

  • Rummukainen M (2010) State-of-the-art with regional climate models. Wiley Interdiscip Rev Clim Change 1:82–96

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J et al (2009) A description of the advanced research WRF Version 3. NCAR/TN-475 + STR NCAR TECHNICAL NOTE 125

  • Steinecke K (1999) Urban climatological studies in the Reykjavık subarctic environment, Iceland. Atmos Environ 33:4157–4162

    Article  Google Scholar 

  • Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol 456–457:12–29. doi:10.1016/j.jhydrol.2012.05.052

    Article  Google Scholar 

  • Thompson G, Rasmussen RM, Manning KW (2004) Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: description and sensitivity analysis. Mon Weather Rev 132:519–542

    Article  Google Scholar 

  • Turner G (2012) Report on methodology to produce Sydney 2 km Contemporary and Future (2030) Land Cover Data. 1–19

  • United Nations Department of Economics and Social Affairs, Population Division (2012) World Prospects, the 2011 Revision. New York

  • Wagner S, Berg P, Schädler G, Kunstmann H (2012) High resolution regional climate model simulations for Germany: part II—projected climate changes. Clim Dyn. doi:10.1007/s00382-012-1510-1

  • Wilby RL (2008) Constructing climate change scenarios of urban heat island intensity and air quality. Environ Plann B 35:902–919. doi:10.1068/b33066t

    Article  Google Scholar 

  • Wong KK, Dirks RA (1978) Mesoscale perturbations on airflow in the urban mixing layer. J Appl Meteorol 17:677–688

    Article  Google Scholar 

Download references

Acknowledgments

This work was made possible by funding from the NSW Environment Trust (RM08603), as well as the NSW Office of Environment and Heritage, and the Australian Research Council as part of the Future Fellowship FT110100576. This work was supported by an award under the Merit Allocation Scheme on the NCI National Facility at the ANU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Argüeso.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Argüeso, D., Evans, J.P., Fita, L. et al. Temperature response to future urbanization and climate change. Clim Dyn 42, 2183–2199 (2014). https://doi.org/10.1007/s00382-013-1789-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1789-6

Keywords

  • Regional climate model
  • Urban heat island
  • Climate change
  • Temperature