Advertisement

Climate Dynamics

, Volume 42, Issue 7–8, pp 2183–2199 | Cite as

Temperature response to future urbanization and climate change

  • Daniel Argüeso
  • Jason P. Evans
  • Lluís Fita
  • Kathryn J. Bormann
Article

Abstract

This study examines the impact of future urban expansion on local near-surface temperature for Sydney (Australia) using a future climate scenario (A2). The Weather Research and Forecasting model was used to simulate the present (1990–2009) and future (2040–2059) climates of the region at 2-km spatial resolution. The standard land use of the model was replaced with a more accurate dataset that covers the Sydney area. The future simulation incorporates the projected changes in the urban area of Sydney to account for the expected urban expansion. A comparison between areas with projected land use changes and their surroundings was conducted to evaluate how urbanization and global warming will act together and to ascertain their combined effect on the local climate. The analysis of the temperature changes revealed that future urbanization will strongly affect minimum temperature, whereas little impact was detected for maximum temperature. The minimum temperature changes will be noticeable throughout the year. However, during winter and spring these differences will be particularly large and the increases could be double the increase due to global warming alone at 2050. Results indicated that the changes were mostly due to increased heat capacity of urban structures and reduced evaporation in the city environment.

Keywords

Regional climate model Urban heat island Climate change Temperature 

Notes

Acknowledgments

This work was made possible by funding from the NSW Environment Trust (RM08603), as well as the NSW Office of Environment and Heritage, and the Australian Research Council as part of the Future Fellowship FT110100576. This work was supported by an award under the Merit Allocation Scheme on the NCI National Facility at the ANU.

References

  1. Argüeso D, Hidalgo-Muñoz JM, Gámiz-Fortis SR et al (2011) Evaluation of WRF parameterizations for climate studies over Southern Spain using a multi-step regionalization. J Clim 24:5633–5651. doi: 10.1175/JCLI-D-11-00073.1 CrossRefGoogle Scholar
  2. Argüeso D, Hidalgo-Muñoz JM, Gámiz-Fortis SR et al (2012a) High-resolution projections of mean and extreme precipitation over Spain using the WRF model (2070–2099 versus 1970–1999). J Geophys Res. doi: 10.1029/2011JD017399
  3. Argüeso D, Hidalgo-Muñoz JM, Gámiz-Fortis SR et al (2012b) Evaluation of WRF Mean and extreme precipitation over spain: present climate (1970–1999). J Clim 25:4883–4897. doi: 10.1175/JCLI-D-11-00276.1 CrossRefGoogle Scholar
  4. Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23:1–26. doi: 10.1002/joc.859 CrossRefGoogle Scholar
  5. Bornstein RD, Johnson DS (1977) Urban-rural wind velocity differences. Atmos Environ 11:597–604CrossRefGoogle Scholar
  6. Chen F, Kusaka H, Bornstein R et al (2011) The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems. Int J Climatol 31:273–288. doi: 10.1002/joc.2158 CrossRefGoogle Scholar
  7. Childs PP, Raman S (2005) Observations and numerical simulations of urban heat Island and Sea Breeze circulations over New York City. Pure Appl Geophys 162:1955–1980. doi: 10.1007/s00024-005-2700-0 CrossRefGoogle Scholar
  8. Chin HNS, Leach MJ, Sugiyama GA et al (2005) Evaluation of an urban canopy parameterization in a mesoscale model using VTMX and URBAN 2000 data. Mon Weather Rev 133:2043–2068CrossRefGoogle Scholar
  9. Evans JP, McCabe MF (2010) Regional climate simulation over Australia’s Murray-Darling basin: a multitemporal assessment. J Geophys Res 115:D14114. doi: 10.1029/2010JD013816 CrossRefGoogle Scholar
  10. Evans JP, McCabe MF (2013) Model resolution impact on regional climate and climate change. Clim Res (accepted)Google Scholar
  11. Evans JP, and Westra S (2012) Investigating the mechanisms of diurnal rainfall variability using a regional climate model. J Clim 25:7232–7247CrossRefGoogle Scholar
  12. Georgescu M, Moustaoui M, Mahalov A, Dudhia J (2011) An alternative explanation of the semiarid urban area “oasis effect”. J Geophys Res 116:D24113. doi: 10.1029/2011JD016720 CrossRefGoogle Scholar
  13. Georgescu M, Mahalov A, Moustaoui M (2012a) Seasonal hydroclimatic impacts of Sun Corridor expansion. Environ Res Lett 7:034026. doi: 10.1088/1748-9326/7/3/034026 CrossRefGoogle Scholar
  14. Georgescu M, Moustaoui M, Mahalov A, Dudhia J (2012b) Summer-time climate impacts of projected megapolitan expansion in Arizona. Nat Clim change. doi: 10.1038/nclimate1656
  15. Gordon H, O’Farrel S, Collier M, et al (2010) The CSIRO Mk3.5 Climate Model. CAWCR Technical Report No 021 1–74Google Scholar
  16. Grimmond CSB (2006) Progress in measuring and observing the urban atmosphere. Theor Appl Climatol 84:3–22. doi: 10.1007/s00704-005-0140-5 CrossRefGoogle Scholar
  17. Grimmond CSB, Oke TR (1999) Heat storage in urban areas: local-scale observations and evaluation of a simple model. J Appl Meteorol 38:922–940CrossRefGoogle Scholar
  18. Hinkel KM, Nelson FE, Klene AE, Bell JH (2003) The urban heat island in winter at Barrow, Alaska. Int J Climatol 23:1889–1905. doi: 10.1002/joc.971 CrossRefGoogle Scholar
  19. Howard L (1833) The climate of London deduced from meteorological observations made in the metropolis and at various places around it. Harvey and Darton, LondonGoogle Scholar
  20. Janković V, Hebbert M (2012) Hidden climate change—urban meteorology and the scales of real weather. Clim Change 113:23–33. doi: 10.1007/s10584-012-0429-1 CrossRefGoogle Scholar
  21. Jin M, Dickinson RE, Zhang D (2005) The footprint of urban areas on global climate as characterized by MODIS. J Clim 18:1551–1565. doi: 10.1175/JCLI3334.1 CrossRefGoogle Scholar
  22. Jones DA, Wang W, Fawcett R (2009) High-quality spatial climate data-sets for Australia. Aus Meteorol Oceanographic J 58:233–248Google Scholar
  23. Jourdain NC, Marchesiello P, Menkes CE et al (2011) Mesoscale simulation of tropical cyclones in the south pacific: climatology and interannual variability. J Clim 24:3–25CrossRefGoogle Scholar
  24. Kalnay E, Cai M (2003) Impact of urbanization and land-use change on climate. Nature 423:528–531CrossRefGoogle Scholar
  25. Kim Y-H, Baik J–J (2002) Maximum urban heat island intensity in Seoul. J Appl Meteorol 41:651–659CrossRefGoogle Scholar
  26. Kusaka H, Kimura F (2004a) Coupling a single-layer urban canopy model with a simple atmospheric model: impact on urban heat island simulation for an idealized case. J Meteorol Soc Jpn 82:67–80CrossRefGoogle Scholar
  27. Kusaka H, Kimura F (2004b) Thermal effects of urban canyon structure on the nocturnal heat island: numerical experiment using a mesoscale model coupled with an urban canopy model. J Appl Meteorol 43:1899–1910CrossRefGoogle Scholar
  28. Kusaka H, Kondo H, Kikeqawa Y, Kimura F (2001) A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Bound-Layer Meteorol 101:329–358CrossRefGoogle Scholar
  29. Kusaka H, Takata T, Takane Y (2010) Reproducibility of regional climate in central Japan using the 4-km Resolution WRF Model. Sola 6:113–116. doi: 10.2151/sola.2010-029 CrossRefGoogle Scholar
  30. Kusaka H, Chen F, Tewari M et al (2012a) Numerical simulation of urban heat island effect by the WRF Model with 4-km grid increment: an inter-comparison study between the urban canopy model and slab model. J Meteorol Soc Jpn 90B:33–45. doi: 10.2151/jmsj.2012-B03 CrossRefGoogle Scholar
  31. Kusaka H, Hara M, Takane Y (2012b) Urban climate projection by the WRF model at 3-km horizontal grid increment: dynamical downscaling and predicting heat stress in the 2070’s August for Tokyo, Osaka, and Nagoya Metropolises. J Meteorol Soc Jpn 90B:47–63. doi: 10.2151/jmsj.2012-B04 CrossRefGoogle Scholar
  32. Lee DO (1979) The influence of atmospheric stability and the urban heat island on urban-rural wind speed differences. Atmos Environ (1967) 13:1175–1180Google Scholar
  33. Lynn BH, Carlson TN, Rosenzweig C et al (2009) A modification to the NOAH LSM to simulate heat mitigation strategies in the New York City Metropolitan Area. J Appl Met Clim 48:199–216. doi: 10.1175/2008JAMC1774.1 CrossRefGoogle Scholar
  34. Masson V (2006) Urban surface modeling and the meso-scale impact of cities. Theor Appl Climatol 84:35–45. doi: 10.1007/s00704-005-0142-3 CrossRefGoogle Scholar
  35. McCarthy MP, Best MJ, Betts RA (2010) Climate change in cities due to global warming and urban effects. Geophys Res Lett 37:L09705. doi: 10.1029/2010GL042845 Google Scholar
  36. Memon RA, Leung DYC, Liu C-H (2009) An investigation of urban heat island intensity (UHII) as an indicator of urban heating. Atmos Res 94:491–500. doi: 10.1016/j.atmosres.2009.07.006 CrossRefGoogle Scholar
  37. Nakicenovic N, Alcamo J, Davis G et al (2000) IPCC Special Report on Emissions Scenarios. Cambridge University Press, CambridgeGoogle Scholar
  38. Oke TR (1982) The energetic basis of the urban heat island. Q J Roy Meteor Soc 108:1–24Google Scholar
  39. Perkins SE, Pitman AJ, Holbrook NJ, McAneney J (2007) Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J Clim 20:4356–4376CrossRefGoogle Scholar
  40. Piani C, Haerter J, Coppola E (2010) Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Climatol 99:187–192CrossRefGoogle Scholar
  41. Rummukainen M (2010) State-of-the-art with regional climate models. Wiley Interdiscip Rev Clim Change 1:82–96CrossRefGoogle Scholar
  42. Skamarock WC, Klemp JB, Dudhia J et al (2009) A description of the advanced research WRF Version 3. NCAR/TN-475 + STR NCAR TECHNICAL NOTE 125Google Scholar
  43. Steinecke K (1999) Urban climatological studies in the Reykjavık subarctic environment, Iceland. Atmos Environ 33:4157–4162CrossRefGoogle Scholar
  44. Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol 456–457:12–29. doi: 10.1016/j.jhydrol.2012.05.052 CrossRefGoogle Scholar
  45. Thompson G, Rasmussen RM, Manning KW (2004) Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: description and sensitivity analysis. Mon Weather Rev 132:519–542CrossRefGoogle Scholar
  46. Turner G (2012) Report on methodology to produce Sydney 2 km Contemporary and Future (2030) Land Cover Data. 1–19Google Scholar
  47. United Nations Department of Economics and Social Affairs, Population Division (2012) World Prospects, the 2011 Revision. New YorkGoogle Scholar
  48. Wagner S, Berg P, Schädler G, Kunstmann H (2012) High resolution regional climate model simulations for Germany: part II—projected climate changes. Clim Dyn. doi: 10.1007/s00382-012-1510-1
  49. Wilby RL (2008) Constructing climate change scenarios of urban heat island intensity and air quality. Environ Plann B 35:902–919. doi: 10.1068/b33066t CrossRefGoogle Scholar
  50. Wong KK, Dirks RA (1978) Mesoscale perturbations on airflow in the urban mixing layer. J Appl Meteorol 17:677–688CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Daniel Argüeso
    • 1
    • 2
  • Jason P. Evans
    • 1
    • 2
  • Lluís Fita
    • 1
    • 2
  • Kathryn J. Bormann
    • 1
    • 2
  1. 1.Climate Change Research CentreUniversity of New South WalesSydneyAustralia
  2. 2.ARC Centre of Excellence for Climate System ScienceSydneyAustralia

Personalised recommendations