Non-linear dependence and teleconnections in climate data: sources, relevance, nonstationarity

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Quantification of relations between measured variables of interest by statistical measures of dependence is a common step in analysis of climate data. The choice of dependence measure is key for the results of the subsequent analysis and interpretation. The use of linear Pearson’s correlation coefficient is widespread and convenient. On the other side, as the climate is widely acknowledged to be a nonlinear system, nonlinear dependence quantification methods, such as those based on information-theoretical concepts, are increasingly used for this purpose. In this paper we outline an approach that enables well informed choice of dependence measure for a given type of data, improving the subsequent interpretation of the results. The presented multi-step approach includes statistical testing, quantification of the specific non-linear contribution to the interaction information, localization of areas with strongest nonlinear contribution and assessment of the role of specific temporal patterns, including signal nonstationarities. In detail we study the consequences of the choice of a general nonlinear dependence measure, namely mutual information, focusing on its relevance and potential alterations in the discovered dependence structure. We document the method by applying it to monthly mean temperature data from the NCEP/NCAR reanalysis dataset as well as the ERA dataset. We have been able to identify main sources of observed non-linearity in inter-node couplings. Detailed analysis suggested an important role of several sources of nonstationarity within the climate data. The quantitative role of genuine nonlinear coupling at monthly scale has proven to be almost negligible, providing quantitative support for the use of linear methods for monthly temperature data.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. An S, Jin F (2004) Nonlinearity and asymmetry of ENSO. J Clim 17(12):2399–2412

    Article  Google Scholar 

  2. Boucharel J, Dewitte B, du Penhoat Y, Garel B, Yeh SW, Kug JS (2011) ENSO nonlinearity in a warming climate. Clim Dyn 37(9–10):2045–2065

    Article  Google Scholar 

  3. Cellucci C, Albano A, Rapp P (2005) Statistical validation of mutual information calculations: comparison of alternative numerical algorithms. Phys Rev E 71(6, Part 2):066,208

    Article  Google Scholar 

  4. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kallberg P, Koehler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thepaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656, Part a):553–597

    Article  Google Scholar 

  5. Diks C, Mudelsee M (2000) Redundancies in the earth’s climatological time series. Phys Lett A 275(5–6):407–414

    Article  Google Scholar 

  6. Donges JF, Zou Y, Marwan N, Kurths J (2009) The backbone of the climate network. EPL 87(4):48,007

    Google Scholar 

  7. Donges JF, Schultz HCH, Marwan N, Zou Y, Kurths J (2011) Investigating the topology of interacting networks theory and application to coupled climate subnetworks. Eur Phys J B 84(4):635–651

    Article  Google Scholar 

  8. Feliks Y, Ghil M, Robertson AW (2010) Oscillatory climate modes in the eastern mediterranean and their synchronization with the north atlantic oscillation. J Clim 23(15):4060–4079

    Article  Google Scholar 

  9. Hannachi A, Stephenson D, Sperber K (2003) Probability-based methods for quantifying nonlinearity in the ENSO. Clim Dyn 20(2–3):241–256

    Google Scholar 

  10. Hannachi A, Jolliffe IT, Stephenson DB (2007) Empirical orthogonal functions and related techniques in atmospheric science: a review. Int J Climatol 27(9):1119–1152

    Article  Google Scholar 

  11. Hartman D, Hlinka J, Paluš M, Mantini D, Corbetta M (2011) The role of nonlinearity in computing graph-theoretical properties of resting-state functional magnetic resonance imaging brain networks. Chaos 21(1):013,119

    Article  Google Scholar 

  12. Hlinka J, Palus M, Vejmelka M, Mantini D, Corbetta M (2011) Functional connectivity in resting-state fMRI: is linear correlation sufficient?. NeuroImage 54:2218–2225

    Article  Google Scholar 

  13. Hlinka J, Hartman D, Palus M (2012) Small-world topology of functional connectivity in randomly connected dynamical systems. Chaos 22(3):033,107

    Article  Google Scholar 

  14. Hsieh W, Wu A, Shabbar A (2006) Nonlinear atmospheric teleconnections. Geophys Res Lett 33(7):L07,714

    Article  Google Scholar 

  15. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471

    Article  Google Scholar 

  16. Kendall M (1938) A new measure of rank correlation. Biometrika 30(Part 1/2):81–93

    Google Scholar 

  17. Khan S, Bandyopadhyay S, Ganguly AR, Saigal S, Erickson DJ III, Protopopescu V, Ostrouchov G (2007) Relative performance of mutual information estimation methods for quantifying the dependence among short and noisy data. Phys Rev E 76(2, Part 2):026,209

    Article  Google Scholar 

  18. Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82(2):247–267

    Article  Google Scholar 

  19. Kraskov A, Stogbauer H, Grassberger P (2004) Estimating mutual information. Phys Rev E 69(6, Part 2):066,138

    Article  Google Scholar 

  20. Palus M (1997) Detecting phase synchronization in noisy systems. Phys Lett A 235(4):341–351

    Article  Google Scholar 

  21. Palus M, Novotna D (1994) Testing for nonlinearity in weather records. Phys Lett A 193(1):67–74

    Article  Google Scholar 

  22. Palus M, Novotna D (2004) Enhanced monte carlo singular system analysis and detection of period 7.8 years oscillatory modes in the monthly NAO index and temperature records. Nonlinear Process Geophys 11(5–6):721–729

    Article  Google Scholar 

  23. Palus M, Novotna D (2006) Quasi-biennial oscillations extracted from the monthly nao index and temperature records are phase-synchronized. Nonlinear Process Geophys 13(3):287–296

    Article  Google Scholar 

  24. Palus M, Novotna D (2009) Phase-coherent oscillatory modes in solar and geomagnetic activity and climate variability. J Atmos Solar Terr Phys 71(8–9):923–930

    Article  Google Scholar 

  25. Palus M, Novotna D (2011) Northern hemisphere patterns of phase coherence between solar/geomagnetic activity and ncep/ncar and era40 near-surface air temperature in period 7–8 years oscillatory modes. Nonlinear Process Geophys 18(2):251–260

    Article  Google Scholar 

  26. Palus M, Albrecht V, Dvorak I (1993) Information theoretic test for nonlinearity in time series. Phys Lett A 175(3–4):203–209

    Article  Google Scholar 

  27. Palus M, Hartman D, Hlinka J, Vejmelka M (2011) Discerning connectivity from dynamics in climate networks. Nonlinear Process Geophys 18(5):751–763

    Article  Google Scholar 

  28. Paluš M (1995) Testing for nonlinearity using redundancies: quantitative and qualitative aspects. Physica D 80(1–2):186–205

    Article  Google Scholar 

  29. Papana A, Kugiumtzis D (2009) Evaluation of mutual information estimators for time series. Int J Bifurcat Chaos 19:4197–4215

    Article  Google Scholar 

  30. Prichard D, Theiler J (1994) Generating surrogate data for time series with several simultaneously measured variables. Phys Rev Lett 73(7):951

    Article  Google Scholar 

  31. Schreiber T, Schmitz A (1996) Improved surrogate data for nonlinearity tests. Phys Rev Lett 77(4):635–638

    Article  Google Scholar 

  32. Schreiber T, Schmitz A (2000) Surrogate time series. Physica D 142(3–4):346–382

    Article  Google Scholar 

  33. Shannon C (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423

    Article  Google Scholar 

  34. Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15:72–101

    Article  Google Scholar 

  35. Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D 58(1–4):77–94

    Article  Google Scholar 

  36. Trenberth K (1997) The definition of el nino. Bull Am Meteorol Soc 78(12):2771–2777

    Article  Google Scholar 

  37. Tsonis A, Roebber P (2004) The architecture of the climate network. Physica A 333:497–504

    Article  Google Scholar 

  38. Tsonis AA, Wang G, Swanson KL, Rodrigues FA, Costa LdF (2011) Community structure and dynamics in climate networks. Clim Dyn 37(5–6):933–940

    Article  Google Scholar 

  39. Uppala S, Kallberg P, Simmons A, Andrae U, Bechtold V, Fiorino M, Gibson J, Haseler J, Hernandez A, Kelly G, Li X, Onogi K, Saarinen S, Sokka N, Allan R, Andersson E, Arpe K, Balmaseda M, Beljaars A, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins B, Isaksen L, Janssen P, Jenne R, McNally A, Mahfouf J, Morcrette J, Rayner N, Saunders R, Simon P, Sterl A, Trenberth K, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612, Part b):2961–3012

    Article  Google Scholar 

  40. Venema V, Bachner S, Rust HW, Simmer C (2006) Statistical characteristics of surrogate data based on geophysical measurements. Nonlinear Process Geophys 13(4):449–466

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by the Czech Science Foundation, Project No. P103/11/J068.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Hlinka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hlinka, J., Hartman, D., Vejmelka, M. et al. Non-linear dependence and teleconnections in climate data: sources, relevance, nonstationarity. Clim Dyn 42, 1873–1886 (2014). https://doi.org/10.1007/s00382-013-1780-2

Download citation

Keywords

  • Climate networks
  • Nonlinearity
  • Mutual information
  • Teleconnections
  • Seasonality in variance
  • Nonstationarity