Skip to main content

Non-linear dependence and teleconnections in climate data: sources, relevance, nonstationarity

Abstract

Quantification of relations between measured variables of interest by statistical measures of dependence is a common step in analysis of climate data. The choice of dependence measure is key for the results of the subsequent analysis and interpretation. The use of linear Pearson’s correlation coefficient is widespread and convenient. On the other side, as the climate is widely acknowledged to be a nonlinear system, nonlinear dependence quantification methods, such as those based on information-theoretical concepts, are increasingly used for this purpose. In this paper we outline an approach that enables well informed choice of dependence measure for a given type of data, improving the subsequent interpretation of the results. The presented multi-step approach includes statistical testing, quantification of the specific non-linear contribution to the interaction information, localization of areas with strongest nonlinear contribution and assessment of the role of specific temporal patterns, including signal nonstationarities. In detail we study the consequences of the choice of a general nonlinear dependence measure, namely mutual information, focusing on its relevance and potential alterations in the discovered dependence structure. We document the method by applying it to monthly mean temperature data from the NCEP/NCAR reanalysis dataset as well as the ERA dataset. We have been able to identify main sources of observed non-linearity in inter-node couplings. Detailed analysis suggested an important role of several sources of nonstationarity within the climate data. The quantitative role of genuine nonlinear coupling at monthly scale has proven to be almost negligible, providing quantitative support for the use of linear methods for monthly temperature data.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  • An S, Jin F (2004) Nonlinearity and asymmetry of ENSO. J Clim 17(12):2399–2412

    Article  Google Scholar 

  • Boucharel J, Dewitte B, du Penhoat Y, Garel B, Yeh SW, Kug JS (2011) ENSO nonlinearity in a warming climate. Clim Dyn 37(9–10):2045–2065

    Article  Google Scholar 

  • Cellucci C, Albano A, Rapp P (2005) Statistical validation of mutual information calculations: comparison of alternative numerical algorithms. Phys Rev E 71(6, Part 2):066,208

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kallberg P, Koehler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thepaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656, Part a):553–597

    Article  Google Scholar 

  • Diks C, Mudelsee M (2000) Redundancies in the earth’s climatological time series. Phys Lett A 275(5–6):407–414

    Article  Google Scholar 

  • Donges JF, Zou Y, Marwan N, Kurths J (2009) The backbone of the climate network. EPL 87(4):48,007

    Google Scholar 

  • Donges JF, Schultz HCH, Marwan N, Zou Y, Kurths J (2011) Investigating the topology of interacting networks theory and application to coupled climate subnetworks. Eur Phys J B 84(4):635–651

    Article  Google Scholar 

  • Feliks Y, Ghil M, Robertson AW (2010) Oscillatory climate modes in the eastern mediterranean and their synchronization with the north atlantic oscillation. J Clim 23(15):4060–4079

    Article  Google Scholar 

  • Hannachi A, Stephenson D, Sperber K (2003) Probability-based methods for quantifying nonlinearity in the ENSO. Clim Dyn 20(2–3):241–256

    Google Scholar 

  • Hannachi A, Jolliffe IT, Stephenson DB (2007) Empirical orthogonal functions and related techniques in atmospheric science: a review. Int J Climatol 27(9):1119–1152

    Article  Google Scholar 

  • Hartman D, Hlinka J, Paluš M, Mantini D, Corbetta M (2011) The role of nonlinearity in computing graph-theoretical properties of resting-state functional magnetic resonance imaging brain networks. Chaos 21(1):013,119

    Article  Google Scholar 

  • Hlinka J, Palus M, Vejmelka M, Mantini D, Corbetta M (2011) Functional connectivity in resting-state fMRI: is linear correlation sufficient?. NeuroImage 54:2218–2225

    Article  Google Scholar 

  • Hlinka J, Hartman D, Palus M (2012) Small-world topology of functional connectivity in randomly connected dynamical systems. Chaos 22(3):033,107

    Article  Google Scholar 

  • Hsieh W, Wu A, Shabbar A (2006) Nonlinear atmospheric teleconnections. Geophys Res Lett 33(7):L07,714

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471

    Article  Google Scholar 

  • Kendall M (1938) A new measure of rank correlation. Biometrika 30(Part 1/2):81–93

    Google Scholar 

  • Khan S, Bandyopadhyay S, Ganguly AR, Saigal S, Erickson DJ III, Protopopescu V, Ostrouchov G (2007) Relative performance of mutual information estimation methods for quantifying the dependence among short and noisy data. Phys Rev E 76(2, Part 2):026,209

    Article  Google Scholar 

  • Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82(2):247–267

    Article  Google Scholar 

  • Kraskov A, Stogbauer H, Grassberger P (2004) Estimating mutual information. Phys Rev E 69(6, Part 2):066,138

    Article  Google Scholar 

  • Palus M (1997) Detecting phase synchronization in noisy systems. Phys Lett A 235(4):341–351

    Article  Google Scholar 

  • Palus M, Novotna D (1994) Testing for nonlinearity in weather records. Phys Lett A 193(1):67–74

    Article  Google Scholar 

  • Palus M, Novotna D (2004) Enhanced monte carlo singular system analysis and detection of period 7.8 years oscillatory modes in the monthly NAO index and temperature records. Nonlinear Process Geophys 11(5–6):721–729

    Article  Google Scholar 

  • Palus M, Novotna D (2006) Quasi-biennial oscillations extracted from the monthly nao index and temperature records are phase-synchronized. Nonlinear Process Geophys 13(3):287–296

    Article  Google Scholar 

  • Palus M, Novotna D (2009) Phase-coherent oscillatory modes in solar and geomagnetic activity and climate variability. J Atmos Solar Terr Phys 71(8–9):923–930

    Article  Google Scholar 

  • Palus M, Novotna D (2011) Northern hemisphere patterns of phase coherence between solar/geomagnetic activity and ncep/ncar and era40 near-surface air temperature in period 7–8 years oscillatory modes. Nonlinear Process Geophys 18(2):251–260

    Article  Google Scholar 

  • Palus M, Albrecht V, Dvorak I (1993) Information theoretic test for nonlinearity in time series. Phys Lett A 175(3–4):203–209

    Article  Google Scholar 

  • Palus M, Hartman D, Hlinka J, Vejmelka M (2011) Discerning connectivity from dynamics in climate networks. Nonlinear Process Geophys 18(5):751–763

    Article  Google Scholar 

  • Paluš M (1995) Testing for nonlinearity using redundancies: quantitative and qualitative aspects. Physica D 80(1–2):186–205

    Article  Google Scholar 

  • Papana A, Kugiumtzis D (2009) Evaluation of mutual information estimators for time series. Int J Bifurcat Chaos 19:4197–4215

    Article  Google Scholar 

  • Prichard D, Theiler J (1994) Generating surrogate data for time series with several simultaneously measured variables. Phys Rev Lett 73(7):951

    Article  Google Scholar 

  • Schreiber T, Schmitz A (1996) Improved surrogate data for nonlinearity tests. Phys Rev Lett 77(4):635–638

    Article  Google Scholar 

  • Schreiber T, Schmitz A (2000) Surrogate time series. Physica D 142(3–4):346–382

    Article  Google Scholar 

  • Shannon C (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423

    Article  Google Scholar 

  • Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15:72–101

    Article  Google Scholar 

  • Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D 58(1–4):77–94

    Article  Google Scholar 

  • Trenberth K (1997) The definition of el nino. Bull Am Meteorol Soc 78(12):2771–2777

    Article  Google Scholar 

  • Tsonis A, Roebber P (2004) The architecture of the climate network. Physica A 333:497–504

    Article  Google Scholar 

  • Tsonis AA, Wang G, Swanson KL, Rodrigues FA, Costa LdF (2011) Community structure and dynamics in climate networks. Clim Dyn 37(5–6):933–940

    Article  Google Scholar 

  • Uppala S, Kallberg P, Simmons A, Andrae U, Bechtold V, Fiorino M, Gibson J, Haseler J, Hernandez A, Kelly G, Li X, Onogi K, Saarinen S, Sokka N, Allan R, Andersson E, Arpe K, Balmaseda M, Beljaars A, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins B, Isaksen L, Janssen P, Jenne R, McNally A, Mahfouf J, Morcrette J, Rayner N, Saunders R, Simon P, Sterl A, Trenberth K, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612, Part b):2961–3012

    Article  Google Scholar 

  • Venema V, Bachner S, Rust HW, Simmer C (2006) Statistical characteristics of surrogate data based on geophysical measurements. Nonlinear Process Geophys 13(4):449–466

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by the Czech Science Foundation, Project No. P103/11/J068.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Hlinka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hlinka, J., Hartman, D., Vejmelka, M. et al. Non-linear dependence and teleconnections in climate data: sources, relevance, nonstationarity. Clim Dyn 42, 1873–1886 (2014). https://doi.org/10.1007/s00382-013-1780-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1780-2

Keywords

  • Climate networks
  • Nonlinearity
  • Mutual information
  • Teleconnections
  • Seasonality in variance
  • Nonstationarity