Climate Dynamics

, Volume 42, Issue 7–8, pp 1873–1886 | Cite as

Non-linear dependence and teleconnections in climate data: sources, relevance, nonstationarity

  • Jaroslav Hlinka
  • David Hartman
  • Martin Vejmelka
  • Dagmar Novotná
  • Milan Paluš
Article

Abstract

Quantification of relations between measured variables of interest by statistical measures of dependence is a common step in analysis of climate data. The choice of dependence measure is key for the results of the subsequent analysis and interpretation. The use of linear Pearson’s correlation coefficient is widespread and convenient. On the other side, as the climate is widely acknowledged to be a nonlinear system, nonlinear dependence quantification methods, such as those based on information-theoretical concepts, are increasingly used for this purpose. In this paper we outline an approach that enables well informed choice of dependence measure for a given type of data, improving the subsequent interpretation of the results. The presented multi-step approach includes statistical testing, quantification of the specific non-linear contribution to the interaction information, localization of areas with strongest nonlinear contribution and assessment of the role of specific temporal patterns, including signal nonstationarities. In detail we study the consequences of the choice of a general nonlinear dependence measure, namely mutual information, focusing on its relevance and potential alterations in the discovered dependence structure. We document the method by applying it to monthly mean temperature data from the NCEP/NCAR reanalysis dataset as well as the ERA dataset. We have been able to identify main sources of observed non-linearity in inter-node couplings. Detailed analysis suggested an important role of several sources of nonstationarity within the climate data. The quantitative role of genuine nonlinear coupling at monthly scale has proven to be almost negligible, providing quantitative support for the use of linear methods for monthly temperature data.

Keywords

Climate networks Nonlinearity Mutual information Teleconnections Seasonality in variance Nonstationarity 

References

  1. An S, Jin F (2004) Nonlinearity and asymmetry of ENSO. J Clim 17(12):2399–2412CrossRefGoogle Scholar
  2. Boucharel J, Dewitte B, du Penhoat Y, Garel B, Yeh SW, Kug JS (2011) ENSO nonlinearity in a warming climate. Clim Dyn 37(9–10):2045–2065CrossRefGoogle Scholar
  3. Cellucci C, Albano A, Rapp P (2005) Statistical validation of mutual information calculations: comparison of alternative numerical algorithms. Phys Rev E 71(6, Part 2):066,208CrossRefGoogle Scholar
  4. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kallberg P, Koehler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thepaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656, Part a):553–597CrossRefGoogle Scholar
  5. Diks C, Mudelsee M (2000) Redundancies in the earth’s climatological time series. Phys Lett A 275(5–6):407–414CrossRefGoogle Scholar
  6. Donges JF, Zou Y, Marwan N, Kurths J (2009) The backbone of the climate network. EPL 87(4):48,007Google Scholar
  7. Donges JF, Schultz HCH, Marwan N, Zou Y, Kurths J (2011) Investigating the topology of interacting networks theory and application to coupled climate subnetworks. Eur Phys J B 84(4):635–651CrossRefGoogle Scholar
  8. Feliks Y, Ghil M, Robertson AW (2010) Oscillatory climate modes in the eastern mediterranean and their synchronization with the north atlantic oscillation. J Clim 23(15):4060–4079CrossRefGoogle Scholar
  9. Hannachi A, Stephenson D, Sperber K (2003) Probability-based methods for quantifying nonlinearity in the ENSO. Clim Dyn 20(2–3):241–256Google Scholar
  10. Hannachi A, Jolliffe IT, Stephenson DB (2007) Empirical orthogonal functions and related techniques in atmospheric science: a review. Int J Climatol 27(9):1119–1152CrossRefGoogle Scholar
  11. Hartman D, Hlinka J, Paluš M, Mantini D, Corbetta M (2011) The role of nonlinearity in computing graph-theoretical properties of resting-state functional magnetic resonance imaging brain networks. Chaos 21(1):013,119CrossRefGoogle Scholar
  12. Hlinka J, Palus M, Vejmelka M, Mantini D, Corbetta M (2011) Functional connectivity in resting-state fMRI: is linear correlation sufficient?. NeuroImage 54:2218–2225CrossRefGoogle Scholar
  13. Hlinka J, Hartman D, Palus M (2012) Small-world topology of functional connectivity in randomly connected dynamical systems. Chaos 22(3):033,107CrossRefGoogle Scholar
  14. Hsieh W, Wu A, Shabbar A (2006) Nonlinear atmospheric teleconnections. Geophys Res Lett 33(7):L07,714CrossRefGoogle Scholar
  15. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471CrossRefGoogle Scholar
  16. Kendall M (1938) A new measure of rank correlation. Biometrika 30(Part 1/2):81–93Google Scholar
  17. Khan S, Bandyopadhyay S, Ganguly AR, Saigal S, Erickson DJ III, Protopopescu V, Ostrouchov G (2007) Relative performance of mutual information estimation methods for quantifying the dependence among short and noisy data. Phys Rev E 76(2, Part 2):026,209CrossRefGoogle Scholar
  18. Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82(2):247–267CrossRefGoogle Scholar
  19. Kraskov A, Stogbauer H, Grassberger P (2004) Estimating mutual information. Phys Rev E 69(6, Part 2):066,138CrossRefGoogle Scholar
  20. Palus M (1997) Detecting phase synchronization in noisy systems. Phys Lett A 235(4):341–351CrossRefGoogle Scholar
  21. Palus M, Novotna D (1994) Testing for nonlinearity in weather records. Phys Lett A 193(1):67–74CrossRefGoogle Scholar
  22. Palus M, Novotna D (2004) Enhanced monte carlo singular system analysis and detection of period 7.8 years oscillatory modes in the monthly NAO index and temperature records. Nonlinear Process Geophys 11(5–6):721–729CrossRefGoogle Scholar
  23. Palus M, Novotna D (2006) Quasi-biennial oscillations extracted from the monthly nao index and temperature records are phase-synchronized. Nonlinear Process Geophys 13(3):287–296CrossRefGoogle Scholar
  24. Palus M, Novotna D (2009) Phase-coherent oscillatory modes in solar and geomagnetic activity and climate variability. J Atmos Solar Terr Phys 71(8–9):923–930CrossRefGoogle Scholar
  25. Palus M, Novotna D (2011) Northern hemisphere patterns of phase coherence between solar/geomagnetic activity and ncep/ncar and era40 near-surface air temperature in period 7–8 years oscillatory modes. Nonlinear Process Geophys 18(2):251–260CrossRefGoogle Scholar
  26. Palus M, Albrecht V, Dvorak I (1993) Information theoretic test for nonlinearity in time series. Phys Lett A 175(3–4):203–209CrossRefGoogle Scholar
  27. Palus M, Hartman D, Hlinka J, Vejmelka M (2011) Discerning connectivity from dynamics in climate networks. Nonlinear Process Geophys 18(5):751–763CrossRefGoogle Scholar
  28. Paluš M (1995) Testing for nonlinearity using redundancies: quantitative and qualitative aspects. Physica D 80(1–2):186–205CrossRefGoogle Scholar
  29. Papana A, Kugiumtzis D (2009) Evaluation of mutual information estimators for time series. Int J Bifurcat Chaos 19:4197–4215CrossRefGoogle Scholar
  30. Prichard D, Theiler J (1994) Generating surrogate data for time series with several simultaneously measured variables. Phys Rev Lett 73(7):951CrossRefGoogle Scholar
  31. Schreiber T, Schmitz A (1996) Improved surrogate data for nonlinearity tests. Phys Rev Lett 77(4):635–638CrossRefGoogle Scholar
  32. Schreiber T, Schmitz A (2000) Surrogate time series. Physica D 142(3–4):346–382CrossRefGoogle Scholar
  33. Shannon C (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423CrossRefGoogle Scholar
  34. Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15:72–101CrossRefGoogle Scholar
  35. Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D 58(1–4):77–94CrossRefGoogle Scholar
  36. Trenberth K (1997) The definition of el nino. Bull Am Meteorol Soc 78(12):2771–2777CrossRefGoogle Scholar
  37. Tsonis A, Roebber P (2004) The architecture of the climate network. Physica A 333:497–504CrossRefGoogle Scholar
  38. Tsonis AA, Wang G, Swanson KL, Rodrigues FA, Costa LdF (2011) Community structure and dynamics in climate networks. Clim Dyn 37(5–6):933–940CrossRefGoogle Scholar
  39. Uppala S, Kallberg P, Simmons A, Andrae U, Bechtold V, Fiorino M, Gibson J, Haseler J, Hernandez A, Kelly G, Li X, Onogi K, Saarinen S, Sokka N, Allan R, Andersson E, Arpe K, Balmaseda M, Beljaars A, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins B, Isaksen L, Janssen P, Jenne R, McNally A, Mahfouf J, Morcrette J, Rayner N, Saunders R, Simon P, Sterl A, Trenberth K, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612, Part b):2961–3012CrossRefGoogle Scholar
  40. Venema V, Bachner S, Rust HW, Simmer C (2006) Statistical characteristics of surrogate data based on geophysical measurements. Nonlinear Process Geophys 13(4):449–466CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jaroslav Hlinka
    • 1
  • David Hartman
    • 1
  • Martin Vejmelka
    • 1
  • Dagmar Novotná
    • 2
  • Milan Paluš
    • 1
  1. 1.Institute of Computer ScienceAcademy of Sciences of the Czech RepublicPrague 8Czech Republic
  2. 2.Institute of Atmospheric PhysicsAcademy of Sciences of the Czech RepublicPrague 8Czech Republic

Personalised recommendations