Advertisement

Climate Dynamics

, Volume 42, Issue 5–6, pp 1189–1202 | Cite as

Evaluation of the CORDEX-Africa multi-RCM hindcast: systematic model errors

  • J. KimEmail author
  • Duane E. Waliser
  • Chris A. Mattmann
  • Cameron E. Goodale
  • Andrew F. Hart
  • Paul A. Zimdars
  • Daniel J. Crichton
  • Colin Jones
  • Grigory Nikulin
  • Bruce Hewitson
  • Chris Jack
  • Christopher Lennard
  • Alice Favre
Article

Abstract

Monthly-mean precipitation, mean (TAVG), maximum (TMAX) and minimum (TMIN) surface air temperatures, and cloudiness from the CORDEX-Africa regional climate model (RCM) hindcast experiment are evaluated for model skill and systematic biases. All RCMs simulate basic climatological features of these variables reasonably, but systematic biases also occur across these models. All RCMs show higher fidelity in simulating precipitation for the west part of Africa than for the east part, and for the tropics than for northern Sahara. Interannual variation in the wet season rainfall is better simulated for the western Sahel than for the Ethiopian Highlands. RCM skill is higher for TAVG and TMAX than for TMIN, and regionally, for the subtropics than for the tropics. RCM skill in simulating cloudiness is generally lower than for precipitation or temperatures. For all variables, multi-model ensemble (ENS) generally outperforms individual models included in ENS. An overarching conclusion in this study is that some model biases vary systematically for regions, variables, and metrics, posing difficulties in defining a single representative index to measure model fidelity, especially for constructing ENS. This is an important concern in climate change impact assessment studies because most assessment models are run for specific regions/sectors with forcing data derived from model outputs. Thus, model evaluation and ENS construction must be performed separately for regions, variables, and metrics as required by specific analysis and/or assessments. Evaluations using multiple reference datasets reveal that cross-examination, quality control, and uncertainty estimates of reference data are crucial in model evaluations.

Keywords

CORDEX Africa RCM evaluation Regional climate Impact assessments Systematic model biases IPCC 

Notes

Acknowledgments

We thank Dr. Guan for the Taylor Diagrams used in this paper. This study is supported by American Recovery and Re-investment Act (ARRA), The National Aeronautics and Space Administration (NASA) National Climate Assessment (11-NCA11-0028) and AIST (AIST-QRS-12-0002) projects, and the National Science Foundation (NSF) ExArch (1125798) and EaSM (2011-67004-30224). The contribution from D. Waliser, C. Mattmann, C. Goodale, A. Hart, P. Zimdars, and D. Crichton to this study was performed on behalf of the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Supplementary material

382_2013_1751_MOESM1_ESM.jpg (477 kb)
Supplementary material 1 (JPEG 477 kb)
382_2013_1751_MOESM2_ESM.jpg (300 kb)
Supplementary material 2 (JPEG 299 kb)
382_2013_1751_MOESM3_ESM.jpg (245 kb)
Supplementary material 3 (JPEG 244 kb)

References

  1. Anderson J, Chung F, Anderson M, Brekke L, Easton D, Ejeta M, Peterson R, Snyder R (2008) Progress on incorporating climate change into management of California’s water resources. Clim Change 87:S91–S108. doi: 10.1007/s10584-007-9353-1 CrossRefGoogle Scholar
  2. Bader DC, Covey C, Gutowski Jr. WJ, Held IM, Kunkel KE, Miller RL, Tokmakian RT, Zhang MH (2008) Climate models: an assessment of strengths and limitations. U.S. Climate Change Science Program Synthesis and Assessment Product 3.1. Dept. of Energy, Office of Biological and Environ. Research, p 124Google Scholar
  3. Baldauf M, Seifert A, Förstner J, Majewski D, Raschendorfer M, Reinhardt T (2011) Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities. Mon Wea Rev. doi: 10.1175/MWR-D-10-05013.1
  4. Boko M, Niang I, Nyong A, Vogel C, Githeko A, Medany M, Osman-Elasha B, Tabo R, Yanda P (2007) Africa. Climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 433–467Google Scholar
  5. Braganza K, Karoly DJ, Arblaster JM (2004) Diurnal temperature range as an index of global climate change during the twentieth century. Geophys Res Lett 31:L13217. doi: 10.1029/2004GL019998 CrossRefGoogle Scholar
  6. Christensen OB, Drews M, Christensen JH (2006) The HIRHAM regional climate model version 5. DMI Tech Rep 06–17:22Google Scholar
  7. Christensen JH, Kjellström E, Giorgi F, Lenderink G, Rummukainen M (2010) Weight assignment in regional climate models. Clim Res 44:179–194CrossRefGoogle Scholar
  8. Coppola E, Giorgi F, Rauscher SA, Piani C (2010) Model weighting based on mesoscale structures in precipitation and temperature in an ensemble of regional climate models. Clim Res 44:121–134CrossRefGoogle Scholar
  9. Crichton DJ, Mattmann CA, Cinquini L, Braverman A, Waliser DE, Gunson M, Hart AF, Goodale CE, Lean PW, Kim J (2012) Software and architecture for sharing satellite observations with the climate modeling community. IEEE Softw 29:63–71CrossRefGoogle Scholar
  10. Déqué M (2010) Regional climate simulation with a mosaic of RCMs. Meteorol Z 19:259–266CrossRefGoogle Scholar
  11. Dosio A, Paruolo P (2011) Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: evaluation on the present climate. J Geophys Res 116:D16106. doi: 10.1029/2011JD015934 CrossRefGoogle Scholar
  12. Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58:175–183Google Scholar
  13. Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res 113. doi: 10.1029/2007JD008972
  14. Hart AF, Goodale CE, Mattmann CA, Zimdars P, Crichton DJ, Lean PW, Kim J, Waliser DE (2011) A cloud-enabled regional climate model evaluation system. SECLOUD’11, May 22, 2011, Honolulu, HI, USAGoogle Scholar
  15. Hewitson B, Lennard C, Nikulin G, Jones C (2012) CORDEX-Africa: a unique opportunity for science and capacity building. CLIVAR Exchanges 60, International CLIVAR Project Office, Southampton, UK, pp 6–7Google Scholar
  16. Hewitt CD (2004) Ensemble-based predictions of climate changes and their impacts. EOS 85:566CrossRefGoogle Scholar
  17. Hong S, Moon N, Lim K, Kim J (2010) Future climate change scenarios over Korea using a multi-nested downscaling system: a pilot study. Asia-Pac J Atmos Sci 46:425–435CrossRefGoogle Scholar
  18. IPCC (1995) Climate change 1995—the science of climate change. IPCC, WMO, p 572Google Scholar
  19. IPCC (2001) Climate change 2001: the scientific basis. IPCC, WMO, p 881Google Scholar
  20. IPCC (2007) Climate change 2007—synthesis report. Intergovernmental Panel on Climate Change, WMO, p 73Google Scholar
  21. Jacob D, Bärring L, Christensen OB, Christensen JH, Hagemann S, Hirschi M, Kjellström E, Lenderink G, Rockel B, Schär C, Seneviratne SI, Somot S, van Ulden A, van den Hurk B (2007) An inter-comparison of regional climate models for Europe: design of the experiments and model performance. Clim Change 81:31–52CrossRefGoogle Scholar
  22. Jones RG, Noguer M, Hassel D, Hudson D, Wilson S, Jenkins G, Mitchell J (2004) Generating high resolution climate change scenarios using HadRM3P. Met Office Hadley Centre Rep., p 40Google Scholar
  23. Jones C, Giorgi F, Asrar G (2011) The coordinated regional downscaling experiment (CORDEX). An international downscaling link to CMIP5. CLIVAR Exchanges 56, International CLIVAR Project Office, Southampton, UK, pp 34–40Google Scholar
  24. Karl TR, Jones PD, Wright RW, Kukla G, Plummer N, Razuvayev V, Gallo KP, Lindseay J, Charson RJ, Peterson TC (1993) Asymmetric trend of daily minimum and maximum temperature. Bull Am Meteorol Soc 74:1007–1023CrossRefGoogle Scholar
  25. Kim J, Lee J-E (2003) A multi-year regional climate hindcast for the western U.S. using the Mesoscale Atmospheric Simulation (MAS) model. J. Hydrometeorol 4:878–890CrossRefGoogle Scholar
  26. Kim J, Kim T, Arritt RW, Miller N (2002) Impacts of increased atmospheric CO2 on the hydroclimate of the western United States. J Clim 15:1926–1942CrossRefGoogle Scholar
  27. Kirstetter P, Hong Y, Gourley JJ, Schwaller M, Petersen W, Zhang J (2012) Comparison of TRMM 2A25 Products version 6 and version 7 with NOAA/NSSL ground radar-based national mosaic QPE. J Hydrometeorol. doi: 10.1175/JHM-D-12-030.1
  28. Krishnamurti TN, Kishtawal CM, Shin DW, Williford CE (2000) Multimodel superensemble forecasts for weather and seasonal climate. J Clim 13:4196–4216CrossRefGoogle Scholar
  29. Lenderink G (2010) Exploring metrics of extreme daily precipitation in a large ensemble of regional climate model simulations. Clim Res 44:151–166CrossRefGoogle Scholar
  30. Liebmann B, Bladé I, Kiladis GN, Carvalho LMV, Senay GB, Allured D, Leroux S, Funk C (2012) Seanonality of African precipitation from 1996 to 2009. J Clim 25:4304–4322CrossRefGoogle Scholar
  31. Mearns LO, Gutowski WJ, Jones R, Leung L-Y, McGinnis S, Nunes AMB, Qian Y (2009) A regional climate change assessment program for North America. EOS, 90, No. 36, 8 Sept 2009, pp 311–312Google Scholar
  32. Mearns MO, Arritt RW, Biner S, Bukovsky M, McGinnis S, Sain S, Caya D, Correia Jr. J, Flori D, Gutowski WJ, Takle ES, Jones R, Leung R, Moufouma-Okia W, McDaniel L, Nunes AMB, Qian Y, Roads JO, Sloan L, Snyder M (2012) The North American Regional Climate Change Assessment Program: overview of phase I results. Bull Am Meteorol Soc (submitted)Google Scholar
  33. Meehl GA, Covey C, Delworth T, Stouffer RJ, Latif M, McAvaney B, Mitchell JF (2007) The WCRP CMIP3 multi-model dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394CrossRefGoogle Scholar
  34. Meijgaard E, van Ulft LH, van den Berg WJ, Bosveld F, van den Hurk B, Lenderink G, Siebesma AP (2008) The KNMI regional atmospheric climate model RACMO, version 2.1. KNMI Tech Rep 302:43Google Scholar
  35. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi: 10.1002/joc.1181 CrossRefGoogle Scholar
  36. Nature (2010) Validation required. Nature 463. doi: 10.1038/463849a
  37. Nikulin G, Jones C, Samuelsson P, Giorgi F, Sylla MB, Asrar G, Büchner M, Cerezo-Mota R, Christensen OB, Déqué M, Fernandez J, Hänsler A, van Meijgaard E, Sushama L (2012) Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J Clim. doi: 10.1174/JCLI-D-11-00375.1
  38. Overpeck JT, Meehl GA, Bony S, Easterling DR (2011) Climate data challenges in the 21st century. Science 331:700–702. doi: 10.1126/science.1197869 CrossRefGoogle Scholar
  39. Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Rauscher SA, Gao X, Francisco R, Zakey A, Winter J, Ashfaq M, Syed FS, Sloan LC, Bell JL, Diffenbaugh NS, Karmacharya J, Konaré A, Martinez D, da Rocha RP, Steiner AL (2007) Regional climate modeling for the developing world: the 18 ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88:1395–1409CrossRefGoogle Scholar
  40. Platnick E, King MD, Ackerman SA, Menzel WP, Baum BA, Riédi JC, Frey RA (2003) The MODIS cloud products: algorithms and examples from Terra. IEEE Trans Geosci Remote Sens 41:459–473CrossRefGoogle Scholar
  41. Reichler T, Kim J (2008a) How well do coupled models simulate today’s climate? Bull Am Meteorol Soc 89:303–311CrossRefGoogle Scholar
  42. Reichler T, Kim J (2008b) Uncertainties in the climate mean state of global observations, reanalyses, and the GFDL climate model. J Geophys Res 113:D05106. doi: 10.1029/2007JD009278 Google Scholar
  43. Reitsma RF, Carron JC (1997) Object-oriented simulation and evaluation of river basin operations. J Geogr Inf Decis Anal 1:9–24Google Scholar
  44. Rusticucci M, Barrucand M (2004) Observed trends and changes in temperature extremes over Argentina. J Clim 17:4099–4107CrossRefGoogle Scholar
  45. Samuelsson P, Jones CG, Willén U, Ullerstig A, Gollvik S, Hansson U, Kjellström E, Nikulin G, Wyser K (2011) The Rossby Centre regional climate model RCA3: model description and performance. Tellus A 63:4–23CrossRefGoogle Scholar
  46. Segele ZT, Lamb PJ, Leslie LM (2009) Seasonal-to-interannual variability of Ethiopia/Horn of Africa monsoon. Part I: associations of wavelet-filtered large-scale atmospheric circulation and global sea surface temperature. J Clim 22:3396–3421CrossRefGoogle Scholar
  47. Shige S, Sasaki H, Okamoto K, Iguchi T (2006) Validation of rainfall estimates from the TRMM precipitation radar and microwave imager using a radiative transfer model: 1. Comparison of the version-5 and -6 products. Geophys Res Lett 33:L13803. doi: 10.1029/2006GL026350 CrossRefGoogle Scholar
  48. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2008) A description of the Advanced Research WRF Version 3. NCAR Tech 15 Note NCAR/TN–475+STR, p 113Google Scholar
  49. Tapiador FJ (2010) A joint estimate of the precipitation climate signal in Europe using eight regional models and five observational datasets. J Clim 23:1719–1738CrossRefGoogle Scholar
  50. Tapiador FJ, Sánchez E (2008) Changes in the European precipitation climatologies (2070–2100) as derived by eight regional climate models. J Clim 21:2540–2557CrossRefGoogle Scholar
  51. Tapiador FJ, Hou AY, de Castro M, Checa R, Cuartero F, Barros AP (2011) Precipitation estimates for hydroelectricity. Energy Environ Sci. doi: 10.1039/C1EE01745D
  52. Tapiador FJ, Turk HJ, Petersen W, Hou AY, Garcia-Ortega E, Machado LAT, Angelis CF, Salio P, Kidd C, Huffman GJ, de Castro M (2012) Global precipitation measurement: methods, datasets and applications. Atmos Res. ISSN 0169-8095Google Scholar
  53. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192CrossRefGoogle Scholar
  54. Waliser DE, Shi Z, Lanzante JR, Oort AH (1999) The Hadley circulation: assessing NCEP/NCAR reanalysis and sparse in situ estimates. Clim Dyn 15:719–735CrossRefGoogle Scholar
  55. Yoon W, Stefanova L, Mitra A, Vijaya TS, Kumar V, Dewar W, Krishnamurti T (2005) A multi-model superensemble algorithm for seasonal climate prediction using DEMETER forecasts. Tellus A 57:280–289. doi: 10.1111/j.1600-0870.2005.00131.x CrossRefGoogle Scholar
  56. Zadra A, Caya D, Côté J, Dugas B, Jones C, Laprise R, Winger K, Caron L (2008) The next Canadian regional climate model. Phys Can 64:75–83Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. Kim
    • 1
    Email author
  • Duane E. Waliser
    • 1
    • 2
  • Chris A. Mattmann
    • 1
    • 2
  • Cameron E. Goodale
    • 2
  • Andrew F. Hart
    • 2
  • Paul A. Zimdars
    • 2
  • Daniel J. Crichton
    • 2
  • Colin Jones
    • 3
  • Grigory Nikulin
    • 3
  • Bruce Hewitson
    • 4
  • Chris Jack
    • 4
  • Christopher Lennard
    • 4
  • Alice Favre
    • 4
    • 5
  1. 1.JIFRESSEUniversity of California Los AngelesLos AngelesUSA
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Sveriges Meteorologiska och Hydrologiska InstitutNorrköpingSweden
  4. 4.University of Cape TownCape TownSouth Africa
  5. 5.Centre de Recherches de Climatologie, UMR 6282, Biogéosciences CNRSUniversitée de BourgogneDijonFrance

Personalised recommendations