Skip to main content

Advertisement

Log in

Anthropogenic changes of the thermal and zonal flow structure over Western Europe and Eastern North Atlantic in CMIP3 and CMIP5 models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The anthropogenic changes during boreal winter in the thermal and zonal flow structure over Eastern Atlantic and Western Europe (EAWE) have been investigated using an ensemble of CMIP3 and CMIP5 models. The ensemble mean change in the zonal wind at 500 hPa over this region is characterized by an eastward extension of the belt of zonal winds. Using the thermal wind relation these wind changes are found to be consistent with the changes in the tropospheric temperature profile. An enhanced warming is simulated in the subtropical upper troposphere and a relative surface cooling in the mid-latitudes. The subtropical upper tropospheric warming is related to the downward branch of the mean meridional circulation, whereas the mid-latitude lower tropospheric relative cooling is linked to the ocean processes that govern changes in its surface temperatures. Inter-model differences in the simulated change of the zonal wind over the EAWE by the CMIP3 and CMIP5 models relate well with differences in the upper tropospheric subtropical warming and the mid-latitude lower tropospheric relative cooling. The simulated change of the zonal wind over the EAWE region by the CMIP3 and CMIP5 models correlates well with changes in the meridional SST gradient. We conclude that uncertainties in the projected changes of the zonal flow over Europe are at least partly due to uncertainties in the response of the North Atlantic Ocean to increased levels of greenhouse gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen RJ, Sherwood SC (2008) Warming in the upper tropical troposphere deduced from thermal winds. Nat Geosci 1:399–403

    Article  Google Scholar 

  • Bretherton CS, Battisti DS (2000) An interpretation of the results from atmospheric circulation models forced by the time history of observed sea surface temperature distribution. Geophys Res Lett 27:767–770

    Article  Google Scholar 

  • Chen G, Lu J, Sun L (2013) Delineating the eddy-zonal flow interaction in the atmospheric circulation response to climate forcing: uniform SST warming in an idealized aqua-planet model. J Atmos Sci. doi:10.1175/JAS-D-12-0248.1

    Google Scholar 

  • Drijfout S, van Oldenborgh GJ, Climatoribus A (2012) Is a decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns? J Clim 25:8373–8379. doi:10.1175/JCLI-D-12-00490.1

    Article  Google Scholar 

  • Haarsma RJ, Selten FM (2012) Anthropogenic changes in the Walker circulation and their impact on the extra-tropical planetary wave structure in the Northern Hemisphere. Clim Dyn. doi:10.1007/s00382-012-1308-1

    Google Scholar 

  • Hazeleger W, Severijns C, Semmler T, Stefanescu S, Yang S, Wang X, Wyser K, Dutra E, Bintanja R, van den Hurk B, van Noije T, Selten F, Sterl A (2010) EC-earth: a seamless earth-system prediction approach in action. Bull Am Meteorol Soc 91:1357–1363

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Global climate projections. In: Solomon S et al (eds) The physical science basis, chap 10. Cambridge University Press, Cambridge

  • Kok CJ, Opsteegh JD (1985) Possible causes of anomalies in seasonal mean circulation patterns during the 1982–83 El Niño event. J Atmos Sci 42:677–694

    Article  Google Scholar 

  • Lau N-C, Holopainen EO (1984) Transient eddy forcing of the time-mean flow as identified by geopotential tendencies. J Atmos Sci 41:313–328

    Article  Google Scholar 

  • Lau N-C, Tennekes H, Wallace JM (1978) Maintenance of the momentum flux by transient eddies in the upper troposphere. J Atmos Sci 35:139–146

    Article  Google Scholar 

  • Lorenz DJ, DeWeaver ET (2007) Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J Geophys Res 112:D10119. doi:10.1029/2006JD008087

    Article  Google Scholar 

  • Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warming. Geophys Res Lett 34:L06805. doi:10.1029/2006GL028443

    Article  Google Scholar 

  • Lu J, Deser C, Reichler T (2009) Cause of the widening of the tropical belt since 1958. Geophys Res Lett 36:L03803. doi:10.1029/2008GL036076

    Article  Google Scholar 

  • Ma J, Xie S-P, Kosaka Y (2012) Mechanisms for tropical tropospheric circulation change in response to global warming. J Clim 25:2979–2994

    Article  Google Scholar 

  • Meehl G, Covey C, Delworth T, Latif M, McAveney B, Mitchell J, Stouffer R, Taylor K (2007) The WCRP CMIP3 multi-model dataset. Bull Am Meteorol Soc 88:1383–1394

    Article  Google Scholar 

  • Opsteegh JD, Vernekar AD (1982) A simulation of the January standing wave pattern including the effects of transient eddies. J Atmos Sci 39:734–744

    Article  Google Scholar 

  • Rotstayn LD, Collier MA, Jeffrey SJ, Kidston J, Syktus JI, Wong KK (2013) Anthropogenic effects on the subtropical jet in the Southern Hemisphere: aerosols versus long-lived greenhouse gases. Environ Res Lett 8:014030. doi:10.1088/1748-9326/8/1/014030

    Article  Google Scholar 

  • Schneider T, O’Gorman PA, Levine XJ (2010) Water vapor and the dynamics of climate changes. Rev Geophys 48:RG3001. doi:10.1029/2009RG000302

    Article  Google Scholar 

  • Seidel DJ, Fu Q, Randel WJ, Reichler TJ (2008) Widening of the tropical belt in a changing climate. Nat Geosci 1:21–24

    Google Scholar 

  • Stephenson DB, Held IM (1993) GCM response of northern winter stationary waves and storm tracks to increasing amounts of carbon dioxide. J Clim 6:1859–1870

    Article  Google Scholar 

  • Sterl A, Severijns C, Dijkstra H, Hazeleger W, van Oldenborgh GJ, van den Broeke M, Burgers G, van den Hurk B, van Leeuwen PJ, van Velthoven P (2008) When can we expect extremely high surface temperatures? Geophys Res Lett 35:L14703. doi:10.1029/2008GL034071

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experimental design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Titchner HA, Thorne PW, McCarthy MP, Tett SBF, Haimberger L, Parker DE (2009) Critically reassessing tropospheric temperature trends from radiosondes using realistic validation experiments. J Clim 22:465–485. doi:10.1175/2008JCLI2419.1

    Article  Google Scholar 

  • Ulbrich U, Pinto JG, Kupfer H, Leckebusch GC, Spangehl T, Reyers M (2008) Changing Northern Hemisphere storm tracks in an ensemble of IPCC climate change simulations. J Clim 21:1669–1679

    Article  Google Scholar 

  • Van den Hurk BJJM, Klein Tank AMG, Lenderink G, van Ulden A, van Oldenborh GJ, Katsman C, van den Brink H, Keller F, Bessembinder J, Burgers G, Komen G, Hazeleger W, Drijfhout SS (2007) New climate scenarios for the Netherlands. Water Sci Technol 56:27–33. doi:10.2166/wst.2007.533

    Google Scholar 

  • Van Ulden AP, van Oldenborgh GJ (2006) Large-scale atmospheric circulation biases and changes in global climate model simulations and their importance for climate change in Central Europe. Atmos Chem Phys 6:863–881

    Article  Google Scholar 

  • van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovi N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109:5–31

    Article  Google Scholar 

  • Woollings T (2008) Vertical structure of anthropogenic zonal-mean atmospheric circulation change. Geophys Res Lett 35:L19702. doi:10.1029/2008GL034883

    Article  Google Scholar 

  • Woollings T, Blackburn M (2012) The North Atlantic jet stream under climate change and its relation to the NAO and EA patterns. J Clim 25:886–902

    Article  Google Scholar 

  • Woollings T, Gregory JM, Pinto JG, Reyers M, Brayshaw DJ (2012) Response of the North Atlantic storm track to climate change shaped by ocean–atmosphere coupling. Nat Geosci 5:313–317. doi:10.1038/ngeo1438

    Article  Google Scholar 

  • Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett 32:L18701. doi:10.1029/2005GL023684

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reindert J. Haarsma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haarsma, R.J., Selten, F. & van Oldenborgh, G.J. Anthropogenic changes of the thermal and zonal flow structure over Western Europe and Eastern North Atlantic in CMIP3 and CMIP5 models. Clim Dyn 41, 2577–2588 (2013). https://doi.org/10.1007/s00382-013-1734-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1734-8

Keywords

Navigation