Climate Dynamics

, Volume 42, Issue 3–4, pp 715–731 | Cite as

Simulated response to inter-annual SST variations in the Gulf Stream region

  • Ralf HandEmail author
  • Noel Keenlyside
  • Nour-Eddine Omrani
  • Mojib Latif


Recent studies show that mid-latitude SST variations over the Kuroshio-Oyashio Extension influence the atmospheric circulation. However, the impact of variations in SST in the Gulf Stream region on the atmosphere has been less studied. Understanding the atmospheric response to such variability can improve the climate predictability in the North Atlantic Sector. Here we use a relatively high resolution (∼1°) Atmospheric General Circulation Model to investigate the mechanisms linking observed 5-year low-pass filtered SST variability in the Gulf Stream region and atmospheric variability, with focus on precipitation. Our results indicate that up to 70 % of local convective precipitation variability on these timescales can be explained by Gulf Stream SST variations. In this region, SST and convective precipitation are strongly correlated in both summer (r = 0.73) and winter (r = 0.55). A sensitivity experiment with a prescribed local warm SST anomaly in the Gulf Stream region confirms that local SST drives most of the precipitation variability over the Gulf Stream. Increased evaporation connected to the anomalous warm SST plays a crucial role in both seasons. In summer there is an enhanced local SLP minimum, a concentrated band of low level convergence, deep upward motion and enhanced precipitation. In winter we also get enhanced precipitation, but a direct connection to deep vertical upward motion is not found. Nearly all of the anomalous precipitation in winter is connected to passing atmospheric fronts. In summer the connection between precipitation and atmospheric fronts is weaker, but still important.


Ocean–atmosphere interaction Gulf Stream SST fronts North Atlantic 



We thank Richard Greatbatch, Shoshiro Minobe, Bunmei Taguchi, and Akira Kuwano-Yoshida for fruitful discussions and Michael Reader and Gareth Berry for providing code and support for the frontal tracking analysis. Further, we thank the two anonymous reviewers for their constructive comments. Ralf Hand was supported by the German Federal Ministry of Education and Research (BMBF) through the MiKliP program, Noel Keenlyside and Nour-Eddine Omrani were funded by the German Research Foundation (DFG) through the Emmy Noether program. Ralf Hand, Noel Keenlyside and Nour-Eddine Omrani benefited from travel grants through the DFG-JSPS cooperation program, which stimulated the collaboration with the groups from Hokkaido University and JAMSTEC on this topic. We thank the MPI for providing the ECHAM5 model and support, and we acknowledge computing resources and technical support from the North-German Supercomputing Alliance (HLRN) and the German Climate Computing Center (DKRZ).


  1. Barsugli JJ, Battisti DS (1998) The basic effects of AtmosphereOcean thermal coupling on midlatitude variability*. J Atmos Sci 55(4):477–493. doi: 10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2, Google Scholar
  2. Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19(15):3518–3543. doi: 10.1175/JCLI3815.1, Google Scholar
  3. Berry G, Reeder MJ, Jakob C (2011) A global climatology of atmospheric fronts. Geophys Res Lett 38. doi: 10.1029/2010GL046451, WOS:000287808400006
  4. Bjerknes J (1964) Atlantic air-sea interaction. Adv Geophys 10:1. Google Scholar
  5. Brayshaw DJ, Hoskins B, Blackburn M (2008) The storm-track response to idealized SST perturbations in an aquaplanet GCM. J Atmos Sci 65(9):2842–2860. doi: 10.1175/2008JAS2657.1, Google Scholar
  6. Bretherton CS, Battisti DS (2000) An interpretation of the results from atmospheric general circulation models forced by the time history of the observed sea surface temperature distribution. Geophys Res Lett 27(6):767–770, doi: 10.1029/1999GL010910, WOS:000085868600008Google Scholar
  7. Butterworth S (1930) On the theory of filter amplifiers. Wireless Eng. 7:536–541Google Scholar
  8. Catto JL, Jakob C, Berry G, Nicholls N (2012) Relating global precipitation to atmospheric fronts. Geophys Res Lett 39(10):n/an/a. doi: 10.1029/2012GL051736,
  9. Cayan D (1992) Latent and sensible heat-flux anomalies over the northern oceans—driving the sea-surface temperature. J Phys Ocean 22(8):859–881. doi: 10.1175/1520-0485(1992)022<0859:LASHFA>2.0.CO;2, WOS:A1992JF12800003Google Scholar
  10. Ciasto LM, Thompson DWJ (2004) North atlantic AtmosphereOcean interaction on intraseasonal time scales. J Clim 17(8):1617–1621. doi: 10.1175/1520-0442(2004)017<1617:NAAIOI>2.0.CO;2, Google Scholar
  11. Collins M, Botzet A, Carril AF, Drange H, Jouzeau A, Latif M, Masina S, Otteraa OH, Pohlmann H, Sorteberg A, Sutton R, Terray L (2006) Interannual to decadal climate predictability in the north atlantic: a multimodel-ensemble study. J Clim 19(7):1195–1203. doi: 10.1175/JCLI3654.1, WOS:000237226700010Google Scholar
  12. Czaja A, Frankignoul C (2002) Observed impact of atlantic SST anomalies on the north atlantic oscillation. J Clim 15(6):606–623. doi: 10.1175/1520-0442(2002)015<0606:OIOASA>2.0.CO;2, Google Scholar
  13. Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19(18):4605–4630. doi: 10.1175/JCLI3884.1, Google Scholar
  14. Deser C, Tomas RA, Peng S (2007) The transient atmospheric circulation response to north atlantic SST and sea ice anomalies. J Clim 20(18):4751–4767. doi: 10.1175/JCLI4278.1, Google Scholar
  15. Fan M, Schneider EK (2012) Observed decadal north atlantic tripole SST variability. Part I: weather noise forcing and coupled response. J Atmos Sci 69(1):35–50. doi: 10.1175/JAS-D-11-018.1,
  16. Griffies SM, Bryan K (1997) A predictability study of simulated north atlantic multidecadal variability. Clim Dyn 13(7–8):459–487. doi: 10.1007/s003820050177, WOS:A1997XX04700001Google Scholar
  17. Gulev S (2013) North atlantic ocean control on surface heat flux at multidecadal timescales. (submitted to Nature)Google Scholar
  18. Hagemann S, Arpe K, Roeckner E (2006) Evaluation of the hydrological cycle in the ECHAM5 model. J Clim 19:3810. doi: 10.1175/JCLI3831.1,
  19. Hodson DLR, Sutton RT, Cassou C, Keenlyside N, Okumura Y, Zhou T (2010) Climate impacts of recent multidecadal changes in atlantic ocean sea surface temperature: a multimodel comparison. Clim Dyn 34(7–8):1041–1058. doi: 10.1007/s00382-009-0571-2, Google Scholar
  20. Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne JL, Fairhead L, Filiberti MA, Friedlingstein P, Grandpeix JY, Krinner G, LeVan P, Li ZX, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27(7–8):787–813. doi: 10.1007/s00382-006-0158-0,
  21. Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the north atlantic sector. Nature 453(7191):84–88. doi: 10.1038/nature06921, WOS:000255398800043Google Scholar
  22. Kushnir Y, Robinson WA, Blad I, Hall NMJ, Peng S, Sutton R (2002) Atmospheric GCM response to extratropical SST anomalies: synthesis and evaluation*. J Clim 15(16):2233–2256. doi: 10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2, Google Scholar
  23. Lohmann U, Roeckner E (1996) Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model. Clim Dyn 12(8):557–572. doi: 10.1007/BF00207939,
  24. Minobe S, Kuwano-Yoshida A, Komori N, Xie SP, Small RJ (2008) Influence of the gulf stream on the troposphere. Nature 452(7184):206–U51. doi: 10.1038/nature06690, WOS:000253925600038Google Scholar
  25. Minobe S, Miyashita M, Kuwano-Yoshida A, Tokinaga H, Xie SP (2010) Atmospheric response to the gulf stream: seasonal variations*. J Clim 23(13):3699–3719. doi: 10.1175/2010JCLI3359.1. Google Scholar
  26. Nakamura H, Sampe T, Tanimoto Y, Shimpo A (2004) Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. Geophys Monogr Ser 147:329–345. doi: 10.1029/147GM18.
  27. Nordeng TE, European Centre for Medium-Range Weather Forecasts (1994) Extended versions of the convective parametrization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. European Centre for Medium-Range Weather Forecasts], Reading, BerksGoogle Scholar
  28. Ogawa F, Nakamura H, Nishii K, Miyasaka T, Kuwano-Yoshida A (2012) Dependence of the climatological axial latitudes of the tropospheric westerlies and storm tracks on the latitude of an extratropical oceanic front. Geophys Res Lett 39(5):n/an/a. doi: 10.1029/2011GL049922.
  29. Omrani NE, Keenlyside N, Bader J, Manzini E (2013) Stratosphere key for wintertime atmospheric response to warm atlantic decadal conditions. submitted to Clim DynGoogle Scholar
  30. Palmer T, Zhaobo S (1985) A modeling and observational study of the relationship between sea-surface temperature in the northwest atlantic and the atmospheric general-circulation. Quart J Roy Meteorol Soc 111(470):947–975. doi: 10.1256/smsqj.47002WOS:A1985AYH1200002 Google Scholar
  31. Peng S, Mysak LA, Derome J, Ritchie H, Dugas B (1995) The differences between early and midwinter atmospheric responses to sea surface temperature anomalies in the northwest atlantic. J Clim 8(2):137–157. doi: 10.1175/1520-0442(1995)008<0137:TDBEAM>2.0.CO;2, Google Scholar
  32. Pohlmann H, Jungclaus JH, Koehl A, Stammer D, Marotzke J (2009) Initializing decadal climate predictions with the GECCO oceanic synthesis: Effects on the north atlantic. J Clim 22(14):3926–3938. doi: 10.1175/2009JCLI2535.1, WOS:000268292300004Google Scholar
  33. Robson J, Sutton R, Lohmann K, Smith D, Palmer MD (2012) Causes of the rapid warming of the north atlantic ocean in the mid-1990s. J Clim 25(12):4116–4134. doi: 10.1175/JCLI-D-11-00443.1, WOS:000306043600009Google Scholar
  34. Röckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) Technical report, no. 349, the atmospheric general circulation modell ECHAM5. Tech. rep., Max-Planck-Institut für Meteorologie, HamburgGoogle Scholar
  35. Rodwell MJ, Rowell DP, Folland CK (1999) Oceanic forcing of the wintertime north atlantic oscillation and european climate. Nature 398(6725):320–323. doi: 10.1038/18648, WOS:000079369600047Google Scholar
  36. Storch H (2010) Statistical analysis in climate research, reprint edn. Cambridge University Press, CambridgeGoogle Scholar
  37. Taguchi B, Nakamura H, Nonaka M, Komori N, Kuwano-Yoshida A, Takaya K, Goto A (2012) Seasonal evolutions of atmospheric response to decadal SST anomalies in the north pacific subarctic frontal zone: observations and a coupled model simulation. J Clim 25(1):111–139. doi: 10.1175/JCLI-D-11-00046.1, WOS:000299130000008Google Scholar
  38. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117(8):1779–1800. doi: 10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2, WOS:A1989AL24800009
  39. Visbeck M, Cullen H, Krahmann G, Naik N (1998) An ocean model’s response to north atlantic oscillation-like wind forcing. Geophys Res Lett 25(24):4521–4524. doi: 10.1029/1998GL900162, WOS:000077882600033Google Scholar
  40. Xie SP (2004) Satellite observations of cool ocean–atmosphere interaction. Bull Am Meteorol Soc 85(2):195–+. doi: 10.1175/BAMS-85-2-195, WOS:000220121800015Google Scholar
  41. Yeager S, Karspeck A, Danabasoglu G, Tribbia J, Teng H (2012) A decadal prediction case study: Late twentieth-century north atlantic ocean heat content. J Clim 25(15):5173–5189. doi: 10.1175/JCLI-D-11-00595.1, WOS:000307089300002 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ralf Hand
    • 1
    Email author
  • Noel Keenlyside
    • 2
  • Nour-Eddine Omrani
    • 1
  • Mojib Latif
    • 1
  1. 1.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  2. 2.Bjerknes Centre and Geophysical Institute University of BergenBergenNorway

Personalised recommendations