Pairwise comparisons to reconstruct mean temperature in the Arctic Atlantic Region over the last 2,000 years

Abstract

Existing multi-proxy climate reconstruction methods assume the suitably transformed proxy time series are linearly related to the target climate variable, which is likely a simplifying assumption for many proxy records. Furthermore, with a single exception, these methods face problems with varying temporal resolutions of the proxy data. Here we introduce a new reconstruction method that uses the ordering of all pairs of proxy observations within each record to arrive at a consensus time series that best agrees with all proxy records. The resulting unitless composite time series is subsequently calibrated to the instrumental record to provide an estimate of past climate. By considering only pairwise comparisons, this method, which we call PaiCo, facilitates the inclusion of records with differing temporal resolutions, and relaxes the assumption of linearity to the more general assumption of a monotonically increasing relationship between each proxy series and the target climate variable. We apply PaiCo to a newly assembled collection of high-quality proxy data to reconstruct the mean temperature of the Northernmost Atlantic region, which we call Arctic Atlantic, over the last 2,000 years. The Arctic Atlantic is a dynamically important region known to feature substantial temperature variability over recent millennia, and PaiCo allows for a more thorough investigation of the Arctic Atlantic regional climate as we include a diverse array of terrestrial and marine proxies with annual to multidecadal temporal resolutions. Comparisons of the PaiCo reconstruction to recent reconstructions covering larger areas indicate greater climatic variability in the Arctic Atlantic than for the Arctic as a whole. The Arctic Atlantic reconstruction features temperatures during the Roman Warm Period and Medieval Climate Anomaly that are comparable or even warmer than those of the twentieth century, and coldest temperatures in the middle of the nineteenth century, just prior to the onset of the recent warming trend.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Ammann CM, Genton MG, Li B (2010) Technical note: correcting for signal attenuation from noisy proxy data in climate reconstructions. Clim Past 6(2):273–279. doi:10.5194/cp-6-273-2010

    Article  Google Scholar 

  2. Anchukaitis KJ, Breitenmoser P, Briffa KR, Buchwal A, Büntgen U, Cook ER, D’Arrigo RD, Esper J, Evans MN, Frank D, Grudd H, Gunnarson BE, Hughes MK, Kirdyanov AV, Körner C, Krusic PJ, Luckman B, Melvin TM, Salzer MW, Shashkin AV, Timmreck C, Vaganov EA, Wilson RJS (2012) Tree rings and volcanic cooling. Nat Geosci 5(12):836–837. doi:10.1038/ngeo1645

    Article  Google Scholar 

  3. Bengtsson L, Semenov VA, Johannessen OM (2004) The early twentieth-century warming in the arctic—a possible mechanism. J Clim 17(20):4045–4057. doi:10.1175/1520-0442(2004017<4045:TETWIT>2.0.CO;2)

    Article  Google Scholar 

  4. Bergthórsson P (1969) An estimate of drift ice and temperature in Iceland in 1,000 years. Jökull 19:94–101

    Google Scholar 

  5. Berner KS, Koç N, Godtliebsen F, Divine D (2011) Holocene climate variability of the Norwegian Atlantic current during high and low solar insolation forcing. Paleoceanography 26. doi:10.1029/2010PA002002

  6. Bingham NH, Fry JM (2010) Regression: linear models in statistics. Springer, London

    Google Scholar 

  7. Bonnans JF (2006) Numerical optimization theoretical and practical aspects. Springer, Berlin

    Google Scholar 

  8. Bradley RS, Briffa KR, Cole J, Hughes MK, Osborn TJ (2003) The climate of the last millennium. In: Alverson K, Bradley RS, Pedersen TF (eds) Paleoclimate, global change, and the future. Springer, Berlin, pp 105–141

  9. Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. J Geophys Res 111(D12). doi:10.1029/2005JD006548

  10. Brönnimann S (2009) Early twentieth-century warming. Nat Geosci 2(11):735–736. doi:10.1038/ngeo670

    Article  Google Scholar 

  11. Calvo E, Grimalt J, Jansen E (2002) High resolution U37K sea surface temperature reconstruction in the Norwegian sea during the Holocene. Quat Sci Rev 21(12–13):1385–1394. doi:10.1016/S0277-3791(01)00096-8

    Article  Google Scholar 

  12. Christiansen B, Ljungqvist FC (2011) Reconstruction of the extratropical NH mean temperature over the last millennium with a method that preserves low-frequency variability. J Clim 24(23):6013–6034. doi:10.1175/2011JCLI4145.1

    Google Scholar 

  13. Chylek P, Folland CK, Lesins G, Dubey MK, Wang M (2009) Arctic air temperature change amplification and the Atlantic multidecadal oscillation. Geophys Res Lett 36:5. doi:200910.1029/2009GL038777

    Article  Google Scholar 

  14. Cook ER, Briffa KR, Meko DM, Graybill DA, Funkhouser G (1995) The ‘segment length curse’ in long tree-ring chronology development for palaeoclimatic studies. Holocene 5(2):229–237. doi:10.1177/095968369500500211

    Article  Google Scholar 

  15. Delworth TL, Knutson TR (2000) Simulation of early 20th century global warming. Science 287(5461):2246–2250. doi:10.1126/science.287.5461.2246

    Article  Google Scholar 

  16. Denton G, Alley R, Comer G, Broecker W (2005) The role of seasonality in abrupt climate change. Quat Sci Rev 24(10–11):1159–1182. doi:10.1016/j.quascirev.2004.12.002

    Article  Google Scholar 

  17. Diaz HF, Trigo R, Hughes MK, Mann ME, Xoplaki E, Barriopedro D (2011) Spatial and temporal characteristics of climate in medieval times revisited. Bull Am Meteorol Soc 92(11):1487–1500. doi:10.1175/BAMS-D-10-05003.1

    Article  Google Scholar 

  18. Divine D, Isaksson E, Martma T, Meijer HA, Moore J, Pohjola V, van de Wal RS, Godtliebsen F (2011) Thousand years of winter surface air temperature variations in Svalbard and northern Norway reconstructed from ice-core data. Polar Res 30. doi:10.3402/polar.v30i0.7379

  19. Evans MN, Reichert BK, Kaplan A, Anchukaitis KJ, Vaganov EA, Hughes MK, Cane MA (2006) A forward modeling approach to paleoclimatic interpretation of tree-ring data. J Geophys Res 111(G3):G03,008. doi:10.1029/2006JG000166

    Article  Google Scholar 

  20. Frank DC, Esper J, Raible CC, Büntgen U, Trouet V, Stocker B, Joos F (2010) Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature 463(7280):527–530. doi:10.1038/nature08769

    Article  Google Scholar 

  21. Gildor H, Tziperman E (2003) Sea-ice switches and abrupt climate change. Philos Trans R Soc A 361(1810):1935–1944. doi:10.1098/rsta.2003.1244

    Article  Google Scholar 

  22. Goosse H, Crespin E, Dubinkina S, Loutre MF, Mann M, Renssen H, Sallaz-Damaz Y, Shindell D (2012) The role of forcing and internal dynamics in explaining the “Medieval climate anomaly”. Clim Dyn:1–20. doi:10.1007/s00382-012-1297-0

  23. Graham N, Ammann C, Fleitmann D, Cobb K, Luterbacher J (2011) Support for global climate reorganization during the “Medieval climate anomaly”. Clim Dyn 37(5):1217–1245. doi:10.1007/s00382-010-0914-z

    Article  Google Scholar 

  24. Grootes PM, Stuiver M (1997) Oxygen 18/16 variability in Greenland snow and ice with 10^3- to 10^5-year time resolution. J Geophys Res 102(C12):26455–26470. doi:199710.1029/97JC00880

    Google Scholar 

  25. Grudd H (2008) Torneträsk tree-ring width and density ad 500–2004: a test of climatic sensitivity and a new 1500-year reconstruction of north Fennoscandian summers. Clim Dyn 31:843–857. doi:10.1007/s00382-007-0358-2

    Article  Google Scholar 

  26. Gunnarson BE, Linderholm HW, Moberg A (2010) Improving a tree-ring reconstruction from west-central Scandinavia: 900 years of warm-season temperatures. Clim Dyn 36:97–108. doi:10.1007/s00382-010-0783-5

    Article  Google Scholar 

  27. Haltia-Hovi E, Saarinen T, Kukkonen M (2007) A 2000-year record of solar forcing on varved lake sediment in eastern Finland. Quat Sci Rev 26(5–6):678–689. doi:10.1016/j.quascirev.2006.11.005

    Article  Google Scholar 

  28. Helama S, Fauria MM, Mielikäinen K, Timonen M, Eronen M (2010) Sub-milankovitch solar forcing of past climates: mid and late Holocene perspectives. Geol Soc Am Bull 122(11–12):1981–1988. doi:10.1130/B30088.1

    Article  Google Scholar 

  29. Isaksson E, Divine D, Kohler J, Martma T, Pohjola V, Motoyama H, Watanabe O (2005) Climate oscillations as recorded in Svalbard ice core omega18O records between AD 1200 and 1997. Geografiska Annaler Ser A 87:203–214. doi:10.1111/j.0435-3676.2005.00253.x

    Article  Google Scholar 

  30. Jiang H, Eiriksson J, Schulz M, Knudsen KL, Seidenkrantz MS (2005) Evidence for solar forcing of sea-surface temperature on the north Icelandic shelf during the late Holocene. Geology 33(1):73–76. doi:10.1130/G21130.1

    Article  Google Scholar 

  31. Jungclaus JH (2009) Palaeoclimate: lessons from the past millennium. Nat Geosci 2(7):468–470. doi:10.1038/ngeo559

    Article  Google Scholar 

  32. Kaspi Y, Sayag R, Tziperman E (2004) A “triple sea-ice state” mechanism for the abrupt warming and synchronous ice sheet collapses during Heinrich events. Paleoceanography 19:12. doi:200410.1029/2004PA001009

    Article  Google Scholar 

  33. Kaufman DS, Schneider DP, McKay NP, Ammann CM, Bradley RS, Briffa KR, Miller GH, Otto-Bliesner BL, Overpeck JT, Vinther BM, Abbott M, Axford Y, Bird B, Birks HJB, Bjune AE, Briner J, Cook T, Chipman M, Francus P, Gajewski K, Geirsdottir A, Hu FS, Kutchko B, Lamoureux S, Loso M, MacDonald G, Peros M, Porinchu D, Schiff C, Seppa H, Thomas E (2009) Recent warming reverses long-term Arctic cooling. Science 325(5945):1236–1239. doi:10.1126/science.1173983

    Article  Google Scholar 

  34. Kirchhefer AJ (2001) Reconstruction of summer temperatures from tree-rings of scots pine (pinus sylvestris l.) in coastal northern Norway. Holocene 11(1):41–52. doi:10.1191/095968301670181592

    Article  Google Scholar 

  35. Korhola A, Weckström J, Holmström L, Erästö P (2000) A quantitative Holocene climatic record from diatoms in northern Fennoscandia. Quat Res 54(2):284–294. doi:10.1006/qres.2000.2153

    Article  Google Scholar 

  36. Kotlyakov V, Arkhipov S, Henderson K, Nagornov O (2004) Deep drilling of glaciers in Eurasian Arctic as a source of paleoclimatic records. Quat Sci Rev 23(11–13):1371–1390. doi:10.1016/j.quascirev.2003.12.013

    Article  Google Scholar 

  37. Lamb HH (1995) Climate, history and the modern world. Routledge, London

    Google Scholar 

  38. Lee TCK, Zwiers FW, Tsao M (2008) Evaluation of proxy-based millennial reconstruction methods. Clim Dyn 31(2–3):263–281. doi:10.1007/s00382-007-0351-9

    Article  Google Scholar 

  39. Li B, Nychka DW, Ammann CM (2010) The value of multiproxy reconstruction of past climate. J Am Stat Assoc 105(491):883–895. doi:10.1198/jasa.2010.ap09379

    Article  Google Scholar 

  40. Li C, Battisti DS, Schrag DP, Tziperman E (2005) Abrupt climate shifts in Greenland due to displacements of the sea ice edge. Geophys Res Lett 32:4. doi:200510.1029/2005GL023492

    Google Scholar 

  41. Linge H, Lauritzen SE, Andersson C, Hansen JK, Skoglund RO, Sundqvist HS (2009) Stable isotope records for the last 10,000 years from Okshola cave (Fauske, northern Norway) and regional comparisons. Clim Past 5:667–682. doi:10.5194/cp-5-667-2009

    Article  Google Scholar 

  42. Lipovetsky S, Conklin WM (2004) Thurstone scaling via binary response regression. Stat Methodol 1(1–2):93–104. doi:10.1016/j.statmet.2004.04.001

    Article  Google Scholar 

  43. Ljungqvist FC (2010) A new reconstruction of the temperature variability in the extra-tropical northern hemisphere during the last two millenia. Geografiska Ann Ser A Phys Geogr 92(3):339–351. doi:10.1111/j.1468-0459.2010.00399.x

    Article  Google Scholar 

  44. Luoto TP, Sarmaja-Korjonen K, Nevalainen L, Kauppila T (2009) A 700 year record of temperature and nutrient changes in a small eutrophied lake in southern Finland. Holocene 19(7):1063–1072. doi:10.1177/0959683609341002

    Article  Google Scholar 

  45. Maidment D (1993) Handbook of hydrology, 1st edn. McGraw-Hill Professional, New York

    Google Scholar 

  46. Mann ME, Rutherford S, Wahl E, Ammann C (2007) Robustness of proxy-based climate field reconstruction methods. J Geophys Res 112(D12). doi:10.1029/2006JD008272

  47. Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK, Rutherford S, Ni F (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci 105(36):13252–13257. doi:10.1073/pnas.0805721105

    Article  Google Scholar 

  48. Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science 326(5957):1256–1260. doi:10.1126/science.1177303

    Article  Google Scholar 

  49. Mann ME, Fuentes JD, Rutherford S (2012a) Reply to ‘Tree rings and volcanic cooling’. Nature Geosci 5(12):837–838. doi:10.1038/ngeo1646

    Article  Google Scholar 

  50. Mann ME, Fuentes JD, Rutherford S (2012b) Underestimation of volcanic cooling in tree-ring-based reconstructions of hemispheric temperatures. Nat Geosci. doi:10.1038/ngeo1394

  51. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11(2):431. doi:10.1137/0111030

    Article  Google Scholar 

  52. Marshall J, Kushnir Y, Battisti D, Chang P, Czaja A, Dickson R, Hurrell J, McCartney M, Saravanan R, Visbeck M (2001) North Atlantic climate variability: phenomena, impacts and mechanisms. Int J Climatol 21(15):1863–1898. doi:10.1002/joc.693

    Article  Google Scholar 

  53. McDermott F, Mattey DP, Hawkesworth C (2001) Centennial-scale Holocene climate variability revealed by a high-resolution speleothem δ18O record from SW Ireland. Science 294(5545):1328–1331. doi:10.1126/science.1063678

    Article  Google Scholar 

  54. McKay NP, Kaufman DS, Michelutti N (2008) Biogenic silica concentration as a high-resolution, quantitative temperature proxy at Hallet lake, south-central Alaska. Geophys Res Lett 35:6. doi:200810.1029/2007GL032876

    Article  Google Scholar 

  55. Miller G, Brigham-Grette J, Alley R, Anderson L, Bauch H, Douglas M, Edwards M, Elias S, Finney B, Fitzpatrick J, Funder S, Herbert T, Hinzman L, Kaufman D, MacDonald G, Polyak L, Robock A, Serreze M, Smol J, Spielhagen R, White J, Wolfe A, Wolff E (2010) Temperature and precipitation history of the Arctic. Quat Sci Rev 29(15–16):1679–1715. doi:10.1016/j.quascirev.2010.03.001

    Article  Google Scholar 

  56. Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlen W (2005) Highly variable northern hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433(7026):613–617. doi:10.1038/nature03265

    Article  Google Scholar 

  57. O’Brien SR, Mayewski PA, Meeker LD, Meese DA, Twickler MS, Whitlow SI (1995) Complexity of Holocene climate as reconstructed from a Greenland ice core. Science 270(5244):1962–1964. doi:10.1126/science.270.5244.1962

    Article  Google Scholar 

  58. Ojala AE, Alenius T (2005) 10000 years of interannual sedimentation recorded in the lake Nautajärvi (finland) clastic-organic varves. Palaeogeogr Palaeoclimatol Palaeoecol 219:285–302. doi:10.1016/j.palaeo.2005.01.002

    Article  Google Scholar 

  59. Overpeck J, Hughen K, Hardy D, Bradley R, Case R, Douglas M, Finney B, Gajewski K, Jacoby G, Jennings A, Lamoureux S, Lasca A, MacDonald G, Moore J, Retelle M, Smith S, Wolfe A, Zielinski G (1997) Arctic environmental change of the last four centuries. Science 278(5341):1251–1256. doi:10.1126/science.278.5341.1251

    Article  Google Scholar 

  60. Patterson WP, Dietrich KA, Holmden C, Andrews JT (2010) Two millennia of north Atlantic seasonality and implications for Norse colonies. Proc Nat Acad Sci 107(12):5306–5310. doi:10.1073/pnas.0902522107

    Article  Google Scholar 

  61. Pflaumann U, Duprat J, Pujol C, Labeyrie LD (1996) SIMMAX: a modern analog technique to deduce atlantic sea surface temperatures from planktonic foraminifera in deep-sea sediments. Paleoceanography 11(1):15. doi:10.1029/95PA01743

    Article  Google Scholar 

  62. Schneider T (2001) Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. J Clim 14:853–871

    Article  Google Scholar 

  63. Schwager M (1999) Ice core analysis on the spatial and temporal variability of temperature and precipitation during the late Holocene in north Greenland. PhD thesis, Alfred-Wegener-Institut für Polar- und Meeresforschung

  64. Sejrup H, Haflidason H, Andrews J (2011) A Holocene north Atlantic SST record and regional climate variability. Quat Sci Rev 30(21–22):3181–3195. doi:10.1016/j.quascirev.2011.07.025

    Article  Google Scholar 

  65. Sicre MA, Hall IR, Mignot J, Khodri M, Ezat U, Truong MX, Eiríksson J, Knudsen KL (2011) Sea surface temperature variability in the subpolar Atlantic over the last two millennia. Paleoceanography. doi:10.1029/2011PA002169

  66. Spielhagen RF, Werner K, Sørensen SA, Zamelczyk K, Kandiano E, Budeus G, Husum K, Marchitto TM, Hald M (2011) Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science 331(6016):450–453. doi:10.1126/science.1197397

    Article  Google Scholar 

  67. Stern H (1990) A continuum of paired comparisons models. Biometrika 77(2):265–273. doi:10.1093/biomet/77.2.265

    Article  Google Scholar 

  68. Sundqvist HS, Zhang Q, Moberg A, Holmgren K, Körnich H, Nilsson J, Brattström G (2010) Climate change between the mid and late Holocene in northern high latitudes—part 1: survey of temperature and precipitation proxy data. Clim Past 6(5):591–608. doi:10.5194/cp-6-591-2010

    Article  Google Scholar 

  69. Thurstone LL (1927) A law of comparative judgment. Psychol Rev 34(4):273–286. doi:10.1037/h0070288

    Article  Google Scholar 

  70. Tiljander M, Saarnisto M, Ojala AEK, Saarinen T (2003) A 3000-year palaeoenvironmental record from annually laminated sediment of lake Korttajärvi, Central Finland. Boreas 32(4):566–577. doi:10.1111/j.1502-3885.2003.tb01236.x

    Article  Google Scholar 

  71. Timmermann A, An SI, Krebs U, Goosse H (2005) ENSO suppression due to weakening of the North Atlantic thermohaline circulation. J Clim 18(16):3122–3139. doi:10.1175/JCLI3495.1

    Article  Google Scholar 

  72. Tingley MP (2012) A Bayesian ANOVA scheme for calculating climate anomalies, with applications to the instrumental temperature record. J Clim 25:777–791. Code is available at ftp://ftp.ncdc.noaa.gov/pub/data/paleo/softlib/anova

  73. Tingley MP, Huybers P (2010a) A Bayesian algorithm for reconstructing climate anomalies in space and time. Part I: development and applications to paleoclimate reconstruction problems. J Clim 23(10):2759–2781. doi:10.1175/2009JCLI3015.1

    Article  Google Scholar 

  74. Tingley MP, Huybers P (2010b) A Bayesian algorithm for reconstructing climate anomalies in space and time. Part II: comparison with the regularized expectation–maximization algorithm. J Clim 23(10):2782–2800. doi:10.1175/2009JCLI3016.1

    Article  Google Scholar 

  75. Tingley MP, Craigmile PF, Haran M, Li B, Mannshardt E, Rajaratnam B (2012) Piecing together the past: statistical insights into paleoclimatic reconstructions. Quat Sci Rev 35:1–22. doi:10.1016/j.quascirev.2012.01.012

    Article  Google Scholar 

  76. Tolwinski-Ward SE, Evans MN, Hughes MK, Anchukaitis KJ (2011) An efficient forward model of the climate controls on interannual variation in tree-ring width. Clim Dyn 36(11–12):2419–2439. doi:10.1007/s00382-010-0945-5

    Article  Google Scholar 

  77. Vinther B, Jones P, Briffa K, Clausen H, Andersen K, Dahl-Jensen D, Johnsen S (2010) Climatic signals in multiple highly resolved stable isotope records from Greenland. Quat Sci Rev 29(3–4):522–538. doi:10.1016/j.quascirev.2009.11.002

    Article  Google Scholar 

  78. Vinther BM, Clausen HB, Johnsen SJ, Rasmussen SO, Andersen KK, Buchardt SL, Dahl-Jensen D, Seierstad IK, Siggaard-Andersen ML, Steffensen JP, Svensson A, Olsen J, Heinemeier J (2006) A synchronized dating of three Greenland ice cores throughout the Holocene. J Geophys Res 111:11. doi:200610.1029/2005JD006921

    Google Scholar 

  79. Vinther BM, Clausen HB, Fisher DA, Koerner RM, Johnsen SJ, Andersen KK, Dahl-Jensen D, Rasmussen SO, Steffensen JP, Svensson AM (2008) Synchronizing ice cores from the Renland and Agassiz ice caps to the Greenland ice core chronology. J Geophys Res 113. doi:10.1029/2007JD009143

  80. Wang Y, Cheng H, Edwards RL, He Y, Kong X, An Z, Wu J, Kelly MJ, Dykoski CA, Li X (2005) The Holocene asian monsoon: links to solar changes and north atlantic climate. Science 308(5723):854–857. doi:10.1126/science.1106296

    Article  Google Scholar 

  81. Wanner H, Beer J, Bütikofer J, Crowley TJ, Cubasch U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan JO, Küttel M, Müller SA, Prentice IC, Solomina O, Stocker TF, Tarasov P, Wagner M, Widmann M (2008) Mid- to late holocene climate change: an overview. Quat Sci Rev 27(19–20):1791–1828. doi:10.1016/j.quascirev.2008.06.013

    Article  Google Scholar 

  82. Welch P (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15(2):70–73. doi:10.1109/TAU.1967.1161901

    Article  Google Scholar 

  83. Wood KR, Overland JE (2010) Early 20th century arctic warming in retrospect. Int J Climatol 30(9):1269–1279. doi:10.1002/joc.1973

    Google Scholar 

  84. Wunsch C (2006) Abrupt climate change: an alternative view. Quat Res 65(2):191–203. doi:10.1016/j.yqres.2005.10.006

    Article  Google Scholar 

Download references

Acknowledgments

This study is part of the IGBP PAGES Arctic2k project. We thank IGBP PAGES for supporting the Arctic2k workshops. We thank the reviewers for their suggestions and comments. We thank Darrell Kaufman, Dmitry Divine, Fredrik Charpentier Ljungqvist, Håkan Grudd, and Samuli Helama for helping to collect proxy records. We also thank all the individual authors who provided us with records.

Authors' contribution

SH and AK designed the overall research. SH designed and implemented PaiCo; assembled data sets and carried out all analyzes; and was primarily responsible for preparation of the manuscript. MPT contributed to the design of the quantitative comparisons and interpretation of results, and to the preparation of the manuscript. AK contributed to the interpretation of results and to the preparation of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sami Hanhijärvi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ZIP 999 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hanhijärvi, S., Tingley, M.P. & Korhola, A. Pairwise comparisons to reconstruct mean temperature in the Arctic Atlantic Region over the last 2,000 years. Clim Dyn 41, 2039–2060 (2013). https://doi.org/10.1007/s00382-013-1701-4

Download citation

Keywords

  • Multiproxy reconstruction
  • Pairwise comparisons
  • Non-linear method
  • North Atlantic
  • Temperature