Skip to main content

Advertisement

Log in

Influence of Antarctic ice sheet lowering on the Southern Hemisphere climate: modeling experiments mimicking the mid-Miocene

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A coupled global atmosphere-ocean model is used to study the influence of the Antarctica ice sheet in a configuration that mimics that of the early Miocene on the atmospheric and oceanic circulations. Based on different climate simulations of the present day (CTR) and conducted with distinct Antarctic ice sheet topography (AIS-EXP), it is found that the reduction of the Antarctic ice sheet topography (AIS) induces warming of the Southern Hemisphere and reduces the meridional thermal gradient. Consequently, the atmospheric transient low level eddy heat flux \([(\overline{v^{\prime}T^{\prime}})]\) and the eddy momentum flux \([(\overline{u^{\prime}v^{\prime}})]\) are reduced causing the reduced transport of heat from the mid-latitudes to the pole. The stationary flow and transient wave anomalies generate changes in the SSTs which modify the rate of deep water formation, strengthening the formation of the Antarctic Bottom Water. Substantial changes are predicted to occur in the atmospheric and oceanic heat transport and a comparison between the total heat transport of the atmosphere-ocean system, as simulated by the AIS-EXP and the CTR runs, shows that the reduction of the AIS height leads to reduced Southern Hemisphere poleward and increased equatorward heat transport. These results are in agreement with reduced storm track activities and baroclinicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alley RB, Whillans IM (1984) Response of the east antarctica ice sheet to sea-level rise. J Geophys Res. doi:10.1029/JC089iC04p06487

  • Alley RB, Clark PU, Huybrechts P, Joughin I (2005) Ice-sheet and sea-level changes. Science 310(5747):456–460. doi:10.1126/science.1114613

    Article  Google Scholar 

  • Barker PF, Burrell J (1977) The opening of drake passage. Mar Geol 25:15–34

    Article  Google Scholar 

  • Billups K, Schrag DP (2002) Paleotemperatures and ice volume of the past 27 Myr revisited with paired Mg/Ca and 18O/16O measurements on benthic foraminifera. Paleoceanography 17(1):1–11. doi:10.1029/2000PA000567

    Google Scholar 

  • Campin J, Goosse H (1999) A parameterization of dense overflow in large-scale ocean models in z coordinate. Tellus 51A:412–430

    Article  Google Scholar 

  • Carter L, Carter R, McCave I (2004) Evolution of the sedimentary system beneath the deep pacific inflow off eastern new zealand. Marine Geol 205(14):9–27. doi:10.1016/S0025-3227(04)00016-7

    Article  Google Scholar 

  • Chen JL, Wilson CR, Blankenship D, Tapley BD (2009) Accelerated Antarctic ice loss from satellite gravity measurements. Nat Geosci 2:859–862. doi:10.1038/ngeo694

    Article  Google Scholar 

  • Cunningham SA et al. (2007) Temporal variability of the atlantic meridional overturning circulation at 26.5n. Science 317(5840):935–938

    Google Scholar 

  • DeConto R, Pollard D, Harwood D (2007) Sea ice feedback and Cenozoic evolution of Antarctic climate and ice sheets. Paleocenography 22. doi:10.1029/2006PA001350

  • DeConto RM, Pollard D (2003) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO 2. Nature. doi:10.1038/nature01290

  • Dong B, Valdes P (2000) Climates at the last glacial maximum: Influence of model horizontal resolution. J Clim 13:1554–1573

    Article  Google Scholar 

  • Fogt RL, Bromwich DH (2006) Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the Southern annular mode. J Clim 19:979–997. doi:10.1175/JCLI3671.1

    Article  Google Scholar 

  • Fyfe JC, Saenko OA (2006) Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys Res Lett. doi:10.1029/2005GL025332

  • Gent P, McWilliams J (1990) Isopycnal mixing in ocean general circulation models. J Phys Oceanogr 20:150–155

    Article  Google Scholar 

  • Goosse H, Fichefet T (1999) Importance of ice-ocean interactions for the global ocean circulation: a model study. J Geophys Res 104(C10):23,337–23,355

    Article  Google Scholar 

  • Guo Z, Bromwich DH, Hines KM (2004) Modeled Antarctic precipitation. Part ii: Enso modulation over West Antarctica. J Clim 17(3):448–465

    Article  Google Scholar 

  • Hall N, Hoskins B, Valdes P, Senior C (1994) Storm tracks in a high-resolution gcm with doubled carbon dioxide. Q J Meteorol Soc 128:1209–1230

    Article  Google Scholar 

  • Hamon N, Sepulchre P, Donnadieu Y, Henrot A-J, Franois L, Jaeger J-J, Ramstein G (2012) Growth of subtropical forests in miocene europe: the roles of carbon dioxide and antarctic ice volume. Geology 40(6):567–570. doi:10.1130/G32990.1

    Article  Google Scholar 

  • Hartmann D, Lo D (1998) Wave-driven zonal flow vacillation in the Southern Hemisphere. J Atmos Sci 55:1303–1315

    Article  Google Scholar 

  • Haupt B, Seidov D (2012) Modeling geologically abrupt climate changes in the miocene: potential effects of high-latitudinal salinity changes. Nat Sci 4:149–158. doi:10.4236/ns.2012.43022

    Google Scholar 

  • Hoskins B, James I, White G (1983) The shape, propagation and mean flow interaction of large scale weather system. J Atmos Sci 40:1595–1612

    Article  Google Scholar 

  • Huybrechts P (1990) A 3-d model for the Antarctic ice sheet: a sensitivity study on the glacial-interglacial contrast. Clim Dyn 5:79–92. doi:10.1007/BF00207423

    Google Scholar 

  • Jablonowski C, Williamson DL (2006) A baroclinic instability test case for atmospheric model dynamical cores. Q J R Meteorol Soc 132(621C):2943–2975. doi:10.1256/qj.06.12

    Article  Google Scholar 

  • Justino F, Machado J (2010) Climate feedbacks induced by the North Atlantic freshwater forcing in a coupled model of intermediate complexity. Braz J Meteorol 25. doi:10.1590/S0102-77862010000100009

  • Justino F, Peltier W (2006) Influence of present day and glacial surface conditions on the Antarctic oscillation/Southern annular mode. Geophys Res Lett. doi:10.1029/2006GL027001

  • Justino F, Timmermann A, Merkel U, Souza E (2005) Synoptic reorganisation of atmospheric flow during the last glacial maximum. J Clim 18(15):2826–2846

    Article  Google Scholar 

  • Justino F, Setzer A, Bracegirdle TJ, Mendes D, Grimm A, Dechiche G, Schaefer CEGR (2010) Harmonic analysis of climatological temperature over Antarctica: present day and greenhouse warming perspectives. Int J Climatol. doi:10.1002/joc.2090

  • Knutti R, Flueckiger J, Stocker T, Timmermann A (2004) Strong hemispheric coupling of glacial climate through continental freshwater discharge and ocean circulation. Nature 430:851–856

    Article  Google Scholar 

  • Kucharski F, Molteni F, Bracco A (2006) Decadal interactions between the western tropical Pacific and the North Atlantic Oscillation. Clim Dyn 26:79–91

    Article  Google Scholar 

  • Kuo H (1956) Forced and free meridional circulations in the atmosphere. J Meteorol 13:561–568

    Article  Google Scholar 

  • Lawver LA, Gahagan LM (1998) Tectonic boundary conditions for climate reconstructions. In: Opening of drake passage and its impact on Cenozoic Ocean Circulation. Oxford University Press, Oxford, pp 212–223

  • Lefebvre W, Goosse H, Timmermann R, Fichefet T (2004) Influence of the southern annular mode on the sea ice-ocean system. J Geophys Res 109:145–157. doi:10.1029/2004JC002403

    Google Scholar 

  • Lorenz EN (1960) Energy and numerical weather prediction. Tellus 12(4):364–373. doi:10.1111/j.2153-3490.1960.tb01323.x

    Article  Google Scholar 

  • Machado JP, Justino F, Pezzi LP (2012) Changes in the global heat transport and eddy-mean flow interaction associated with weaker thermohaline circulation. Int J Climatol 32(15):2255–2270. doi:10.1002/joc.3411

    Article  Google Scholar 

  • Manabe S, Stouffer R (1997) Coupled ocean-atmosphere model response to freshwater input: comparison to younger dryas event. Nature 12:321–336

    Google Scholar 

  • Matano R, Palma E (2008) On the upwelling of downwelling currents. J Phys Oceanogr. doi:10.1175/2008JPO3783.1

  • Mellor G, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys 20:851–875

    Article  Google Scholar 

  • Molteni F (2003) Atmospheric simulations using a GCM with simplified physical parametrizations. I. Model climatology and variability in multi-decadal experiments. Clim Dyn 20:175–191

    Google Scholar 

  • Ogura T, Ouchi AA (2001) Influence of the Antarctic ice sheet on southern high latitude climate during the Cenozoic: Albedo vs topography effect. Geophys Res Lett. doi:10.1029/2000GL011366

  • Orsi A, Johnson G, Bullister J (1999) Circulation, mixing, and production of antarctic bottom water. Progr Oceanogr 43(1):55–109. doi:10.1016/S0079-6611(99)00004-X

    Article  Google Scholar 

  • Peixoto J, Oort A (1992) Physics of climate. Springer, New York

    Google Scholar 

  • Pekar SF, DeConto RM (2006) High-resolution ice-volume estimates for the early miocene: evidence for a dynamic ice sheet in antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 231(12):101–109. doi:10.1016/j.palaeo.2005.07.027

    Article  Google Scholar 

  • Pezzi LP, de Souza K, Buss R, Acevedo O, Wainer I, Mata MM, Garcia CAE, de Camargo R (2009) Multiyear measurements of the oceanic and atmospheric boundary layers at the Brazil-Malvinas confluence region. J Geophys Res D 114:D19,103

    Article  Google Scholar 

  • Pollard D, DeConto RM (2005) Hysteresis in Cenozoic Antarctic ice sheet variations. Glob Planet Change 45:9–21. doi:10.1016/j.gloplacha.2004.09.011

    Google Scholar 

  • Pollard D, DeConto RM, Nyblade AA (2005) Sensitivity of cenozoic Antarctic ice sheet variations to geothermal heat flux. Global Planet Change 49:63–74. doi:10.1016/j.gloplacha.2005.05.003

    Article  Google Scholar 

  • Ridgway K, Godfrey J (1997) Seasonal cycle of the East Australian Current. J Geophys Res 102:22921–22936

    Article  Google Scholar 

  • Santoso A, England MH (2008) Antarctic bottom water variability in a coupled climate model. J Phys Oceanogr 38(9) http://dx.doi.org/10.1175/2008JPO3741.1

  • Seidov D, Barron E, Haupt B (2001a) Meltwater and the global conveyor: northern versus southern connections. Global Planet Change 30:257–270

    Article  Google Scholar 

  • Seidov D, Haupt BJ, Barron EJ, Maslin M (2001b) The oceans and rapid climate change: past, present, and future, chap. In: Ocean bi-polar seesaw and climate: Southern versus northern meltwater impacts. AGU, Washington, pp 169–197

  • Severijns CA, Hazeleger W (2010) The efficient global primitive equation climate model SPEEDO V.20. Geosci Model Dev 3:105–122. doi:10.5194/gmd-3-105-2010

    Article  Google Scholar 

  • Speer K, Rintoul SR, Sloyan B (2000) The diabatic deacon cell. J Phys Oceanogr 30

  • Stocker T, Johnsen S (2003) A minimum thermodynamic model for a bipolar seesaw. Paleoceanography 18(4):1–10. doi:10.1029/2003PA000920

    Google Scholar 

  • Stouffer R, Seidov D, Haupt B (2007) Climate response to external sources of freshwater: North Atlantic versus the Southern Ocean. J Clim 20:436–448

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13:1000–1016

    Article  Google Scholar 

  • Thomson DJ (1982) Spectrum estimation and harmonic analysis. Proc IEEE 70(9):1055–1094

    Article  Google Scholar 

  • Timmermann A, Justino F, Jin F-F, Goosse H (2004) Surface temperature control in the North and tropical Pacific during the last glacial maximum. Clim Dyn 23:353–370

    Article  Google Scholar 

  • Trenberth K (1991) Storm tracks in the southern hemisphere. J Atmos Sci 48:2151–2178

    Article  Google Scholar 

  • Trenberth K, Caron J (2001) Estimates of meridional atmosphere and ocean heat transports. J Clim 14:3433–3443

    Article  Google Scholar 

  • van den Broeke MR, van Lipzig NPM (2004) Changes in Antarctic temperature, wind and precipitation in response to the Antarctic Oscillation. Ann Glaciol 39:119–126

    Article  Google Scholar 

  • Vaughan DG, Arthern R (2007) Why is it hard to predict the future of ice sheets?. Science 315(5818):1503–1504. doi:10.1126/science.1141111

    Article  Google Scholar 

  • Villalba R, Boninsegna JA, Lara A, Delgado S (2001) Decadal-scale climatic variability in the South American sector of the Southern Ocean: evidence from tree-ring records during the past four centuries. In: Tree rings and people

  • Visbeck M, Hall A (2004) Comments on “Synchronous variability in the southern hemisphere atmosphere, sea ice, and ocean resulting from the annular mode” -Reply. J Clim 17(11):2255–2258

    Article  Google Scholar 

  • Xie S (1994) On the genesis of the equatorial annual cycle. J Clim 7:2008–2013

    Article  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science. doi:10.1126/science.1059412

Download references

Acknowledgments

We are pleased to acknowledge that the financial support has been provided through the FAPESP project 2011/20636-1, CNPQ 558290/2009-4 and FAPEMIG CRA-PPM-00020-11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Justino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Justino, F., Marengo, J., Kucharski, F. et al. Influence of Antarctic ice sheet lowering on the Southern Hemisphere climate: modeling experiments mimicking the mid-Miocene. Clim Dyn 42, 843–858 (2014). https://doi.org/10.1007/s00382-013-1689-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1689-9

Keywords

Navigation