Climate Dynamics

, Volume 41, Issue 11–12, pp 3103–3126 | Cite as

The respective roles of surface temperature driven feedbacks and tropospheric adjustment to CO2 in CMIP5 transient climate simulations

  • Lorenzo Tomassini
  • Olivier Geoffroy
  • Jean-Louis Dufresne
  • Abderrahmane Idelkadi
  • Chiara Cagnazzo
  • Karoline Block
  • Thorsten Mauritsen
  • Marco Giorgetta
  • Johannes Quaas
Article

Abstract

An overview of radiative climate feedbacks and ocean heat uptake efficiency diagnosed from idealized transient climate change experiments of 14 CMIP5 models is presented. Feedbacks explain about two times more variance in transient climate response across the models than ocean heat uptake efficiency. Cloud feedbacks can clearly be identified as the main source of inter-model spread. Models with strong longwave feedbacks in the tropics feature substantial increases in cloud ice around the tropopause suggestive of changes in cloud-top heights. The lifting of the tropical tropopause goes together with a general weakening of the tropical circulation. Distinctive inter-model differences in cloud shortwave feedbacks occur in the subtropics including the equatorward flanks of the storm-tracks. Related cloud fraction changes are not confined to low clouds but comprise middle level clouds as well. A reduction in relative humidity through the lower and mid troposphere can be identified as being the main associated large-scale feature. Experiments with prescribed sea surface temperatures are analyzed in order to investigate whether the diagnosed feedbacks from the transient climate simulations contain a tropospheric adjustment component that is not conveyed through the surface temperature response. The strengths of the climate feedbacks computed from atmosphere-only experiments with prescribed increases in sea surface temperatures, but fixed CO2 concentrations, are close to the ones derived from the transient experiment. Only the cloud shortwave feedback exhibits discernible differences which, however, can not unequivocally be attributed to tropospheric adjustment to CO2. Although for some models a tropospheric adjustment component is present in the global mean shortwave cloud feedback, an analysis of spatial patterns does not lend support to the view that cloud feedbacks are dominated by their tropospheric adjustment part. Nevertheless, there is positive correlation between the strength of tropospheric adjustment processes and cloud feedbacks across different climate models.

Keywords

Climate feedbacks Tropospheric adjustment Transient climate response 

References

  1. Andrews T, Gregory JM, Forster PM, Webb MJ (2011) Cloud adjustment and its role in CO2 radiative forcing and climate sensitivity: a review. Surv Geophys. doi:10.1007/s10712-011-9152-0
  2. Andrews T, Gregory JM, Webb MJ, Taylor KE (2012) Forcing, feedbacks and climate senisitivity in CMIP5 coupled atmosphere-ocean climate models. Geophys Res Lett 39. doi:10.1029/2012GL051607
  3. Block K, Mauritsen T (2012) Forcing and feedback in the MPI-ESM-LR coupled model under abruptly qudrupled CO2, submitted to J Adv Model Earth SystGoogle Scholar
  4. Bony S, Dufresne JL (2005) Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys Res Lett 32. doi:10.1029/2005GL023851
  5. Bony S, Colman R, Kattsov VM, Allan RP, Bretherton CS, Dufresne JL, Hall A, Hallegatte S, Holland MM, Ingram W, Randall DA, Soden BJ, Tselioudis G, Webb MJ (2006) How well do we understand and evaluate climate change feedback processes? J Clim 19:3445–3482CrossRefGoogle Scholar
  6. Brient F, Bony S (2012) Interpretation of the positive low-cloud feedback predicted by a climate model under global warming. Clim Dyn. doi:10.1007/s00382-011-1279-7
  7. Cess RD, Potter GL (1988) A methodology for understanding and intercomparing atmospheric climate feedback processes in general circulation models. J Geophys Res 93:8305–8314CrossRefGoogle Scholar
  8. Charba JP (1977) Operational system for predicting thunderstorms two to 6 h in advance. Tech Rep 64, NOAAGoogle Scholar
  9. Chylek P, Li J, Dubey MK, Wang M, Lesins G (2011) Observed and model simulated 20th century Arctic temperature variability: Canadian Earth System Model CanESM2. Atmos Chem Phys Discuss 11:22893–22907CrossRefGoogle Scholar
  10. Clement AC, Burgman R, Norris JR (2009) Observational and model evidence for positive low-level cloud feedback. Science 325:460–464CrossRefGoogle Scholar
  11. Climate System Modeling Division (2005) An introduction to the first-generation operational climate model at National Climate Center. No. 1 in Advances in Climate System ModelingGoogle Scholar
  12. Clough SA, Shephard MW, Mlawer EJ, Delamere JS, Jacono MJ, Cady-Pereira K, Boukabara S, Brown PD (2005) Atmospheric radiative transfer modeling: a summary of the AER codes. J Quant Spectr Rad Transf 91:233–244CrossRefGoogle Scholar
  13. Collins WD, Ramaswamy V, Schwarzkopf MD, Sun Y, Portmann RW, Fu Q, Casanova SEB, Dufresne JL, Fillmore DW, Forster PMD, Galin VY, Gohar LK, Ingram WJ, Kratz DP, Lefebvre MP, Li J, Marquet P, Oinas V, Tsushima Y, Uchiyama T, Zhong WY (2006) Radiative forcing by well-mixed greenhouse gases: estimates from climate models in the intergovernmental panel on climate change (IPCC) fourth assessment report (AR4). J Geophys Res 111. doi:10.1029/2005JD006713
  14. Colman R (2003) A comparison of climate feedbacks in general circulation models. Clim Dyn 20:865–873. doi:10.1007/s00382-003-0310-z Google Scholar
  15. Colman R, Fraser J, Rotstayn L (2001) Climate feedbacks in a general circulation model incorporating prognostic clouds. Clim Dyn 18:103–122. doi:10.1007/s003820100162 CrossRefGoogle Scholar
  16. Colman RA, McAvaney BJ (1997) A study of general circulation model climate feedbacks determined from perturbed sea surface temperature experiments. J Geophys Res 102:19383–19402CrossRefGoogle Scholar
  17. Colman RA, McAvaney BJ (2011) On tropospheric adjustment to forcing and climate feedbacks. Clim Dyn 36:1649–1658. doi:10.1007/s00382-011-1067-4 CrossRefGoogle Scholar
  18. Crueger T, Hohenegger C, May W (2012) Tropical precipitation and convection changes in the MPI-ESM in response to CO2 forcing. J Adv Model Earth Syst. doi:10.1002/jame.20012
  19. Del Genio AD, Kovari W (2002) Climatic properties of tropical precipitating convection under varying environmental conditions. J Clim 15:2597–2615CrossRefGoogle Scholar
  20. Dommenget D (2012) Analysis of the model climate sensitivity spread forced by mean sea surface temperature biases. J Clim. doi:10.1175/JCLI-D-11-00600.1
  21. Dufresne JL, Bony S (2008) An assessment of the primary sources of spread of global warming estimates from coupled atmosphere-ocean models. J Clim 21:5135–5144CrossRefGoogle Scholar
  22. Dufresne JL, Foujols MA, Denvil S, Chaubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Cheruy F, Codron F, Cozic A, Cugnet D, de Noblet N, Duvel JP, Ethé C, Fairhead L, Fichefet T, Flavoni S, Friedlingstein P, Grandpeix JY, Guez L, Guilyardi E, Hauglustaine D, Hourdin F, Idelkadi A, Ghattas J, Kageyama SJM, Krinner G, Lebetoulle S, Lehellec A, Lefebvre MP, Lefevre F, Levy C, Li ZX, Lloyd J, Lott F, Medec G, Mancip M, Marchand M, Masson S, Meurdesoif Y, Mignot J, Musat I, Parouty S, Polcher J, Rio C, Schulz M, Swingedouw D, Szopa S, Talandier C, Terray P, Viovy N (2012) Climate change projections using the IPSL-CM5 Earth system model: from CMIP3 to CMIP5. Clim Dyn. doi:10.1007/s00382-012-1636-1
  23. Forster PM, Taylor KE (2006) Climate forcings and climate sensitivities diagnosed from coupled climate model integrations. J Clim 19:6181–6194CrossRefGoogle Scholar
  24. Fouquart Y, Bonnel B (1980) Computations of solar heating of the Earth’s atmosphere: a new parametrization. Beitr Phys Atmos 53:35–62Google Scholar
  25. Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasche PJ, Vertenstein M, Worley PH, Yang ZL, Zhang M (2011) The community climate system model version 4. J Clim 24:4973–4991CrossRefGoogle Scholar
  26. Gettelman A, Kay JE, Shell KM (2012) The evolution of climate sensitivity and climate feedbacks in the community atmosphere model. J Clim 25:1453–1469CrossRefGoogle Scholar
  27. Giorgetta M, et al (2012) Climate variability and climate change in the MPI-ESM CMIP5 simulations, in preparationGoogle Scholar
  28. Gregory JM, Mitchell JFB (1997) The climate response to CO2 of the Hadley Centre coupled AOGCM with and without flux adjustment. Geophys Res Lett 24:1943–1946CrossRefGoogle Scholar
  29. Gregory JM, Webb M (2008) Tropospheric adjustment induces a cloud component in CO2 forcing. J Clim 21:58–71CrossRefGoogle Scholar
  30. Hansen JE, Lacis A, Rind D, Russel G, Stone P, Fung I, Ruedy R (1984) Climate sensitivity: analysis of feedback mechanisms. In: Hansen JE, Takahashi T (eds) Climate processes and climate sensitivity. AGU geophysical monograph, vol 29, pp 130–163Google Scholar
  31. Held IM, Shell KM (2012) Using relative humidity as a state variable in climate feedback analysis. J Clim 25:2578–2582CrossRefGoogle Scholar
  32. Held IM, Soden BJ (2000) Water vapor feedback and global warming. Annu Rev Energy Environ 25:441–475CrossRefGoogle Scholar
  33. Jones CD, Hughes JK, Bellouin N, Hardiman SC, Jones GS, Knight J, Liddicoat S, O’Connor FM, Andres RJ, Bell C, Boo KO, Bozzo A, Butchart N, Cadule P, Corbin KD, Doutriaux-Boucher M, Friedlingstein P, Gornall J, Gray L, Halloran PR, Hurtt G, Ingram WJ, Lamarque JF, Law RM, Meinshausen M, Osprey S, Palin EJ, Chini LP, Raddatz T, Sanderson MG, Sellar AA, Schurer A, Valdes P, Wood N, Woodward S, Yoshioka M, Zerroukat M (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4:543–570CrossRefGoogle Scholar
  34. Jonko AK, Shell KM, Sanderson BM, Danabasoglu G (2012) Climate feedbacks in CCSM3 under changing CO2 forcing. Part I: adapting the linear radiative kernel technique to feedback calculations for a broad range of forcings. J Clim 25:5260–5272CrossRefGoogle Scholar
  35. Kamae Y, Watanabe M (2012) Tropospheric adjustment to increasing CO2: its timescale and the role of land-sea contrast. Clim Dyn. doi:10.1007/s00382-012-1555-1
  36. Lambert FH, Webb MJ (2011) The relationship between land-ocean surface temperature contrast and radiative forcing. J Clim 24:3239–3256CrossRefGoogle Scholar
  37. Langen PL, Graversen RG, Mauritsen T (2012) Separation of contributions from radiative feedbacks to polar amplification on an aquaplanet. J Clim 25:3010–3024CrossRefGoogle Scholar
  38. Manabe S, Wetherald RT (1980) On the distribution of climate change resulting from an increase in CO2 content of the atmosphere. J Atmos Sci 37:99–118CrossRefGoogle Scholar
  39. Mauritsen T, Graversen RG, Klocke D, Langen PL, Stevens B, Tomassini L (2012) Climate feedback efficiency and synergy, submitted to Clim DynGoogle Scholar
  40. Myhre G, Highwood EJ, Shine KP, Stordal F (1998) New estimates of radiative forcing due to well mixed greenhouse gases. Geophys Res Lett 25:2715–2718CrossRefGoogle Scholar
  41. Pethoukov V, Semenov VA (2010) A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J Geophys Res 115. doi:10.1029/2009JD013568
  42. Rieck M, Nouijens L, Stevens B (2012) Marine boundary-layer cloud feedbacks in a constant relative humidity atmosphere. J Atmos Sci. doi:10.1175/JAS-D-11-0203.1
  43. Seland O, Iversen T, Kirkevag A, Storelvmo T (2008) Aerosol-climate interactions in the CAM-Oslo atmsopheric GCM and investigation of associated basic shortcomings. Tellus A 60:459–491CrossRefGoogle Scholar
  44. Shell KM, Kiehl JT, Shields CA (2008) Using the radiative kernel technique to calculate climate feedbacks in NCAR’s community atmospheric model. J Clim 21:2269–2282CrossRefGoogle Scholar
  45. Sherwood SC, Ingram W, Tsushima Y, Satoh M, Roberts M, Vidale PL, O’Gorman PA (2010) Relative humidity changes in a warmer climate. J Geophys Res 115. doi:10.1029/2009JD012585
  46. Soden BJ, Held IM (2006) An assessment of climate feedbacks in coupled ocean-atmosphere models. J Clim 19:3354–3360CrossRefGoogle Scholar
  47. Soden BJ, Vecchi GA (2011) The vertical distribution of cloud feedback in coupled ocean-atmosphere models. Geophys Res Lett 38. doi:10.1029/2011GL047632
  48. Soden BJ, Held IM, Colman R, Shell KM, Kiehl JT, Shields CA (2008) Quantifying climate feedbacks using radiative kernels. J Clim 21:3504–3520CrossRefGoogle Scholar
  49. Stevens B, Giorgetta M, Esch M, Mauritsen T, Crueger T, Rast S, Salzmann M, Schmidt H, Bader J, Block K, Brokopf R, Fast I, Kinne S, Kornblueh L, Lohmann U, Pincus R, Reichler T, Roeckner E (2012) The atmospheric component of the MPI-M earth system model: ECHAM6. J Adv Model Earth Syst. doi:10.1002/jame.20015
  50. Tan J, Jakob C, Lane TP (2012) On the identification of the large-scale properties of tropical convection using cloud regimes, submitted to J ClimGoogle Scholar
  51. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteor Soc 93:485–498CrossRefGoogle Scholar
  52. Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20:4316–4340CrossRefGoogle Scholar
  53. Voldoire A, Sanchez-Gomez E, Salas y Mélia D, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M, Déqué M, Deshayes J, Douville H, Fernandez E, Madec G, Maisonnave E, Moine MP, Planton S, Saint-Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Coquart L, Chauvin F (2012) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn. doi:10.1007/s00382-011-1259-y
  54. Volodin EM, Dianskii NA, Gusev AV (2010) Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulation. Izv Atmos Ocean Phys 46:414–431CrossRefGoogle Scholar
  55. Watanabe M, Suzuki T, O’ishi R, Komuro Y, Watanabe S, Emori S, Takemura T, Chikira M, Ogura T, Sekiguchi M, Takata K, Yamazaki D, Yokohata T, Nozawa T, Hasumi H, Tatebe H, Kimoto M (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23:6312–6335CrossRefGoogle Scholar
  56. Watanabe M, Shiogama H, Yoshimori M, Ogura T, Yokohata T, Okamoto H, Emori S, Kimoto M (2011) Fast and slow timescales in the tropical low-cloud response to increasing CO2 in two climate models. Clim Dyn. doi:10.1007/s00382-011-1178-y
  57. Webb MJ, Lambert FH, Gregory JM (2012) Origins of differences in climate sensitivity, forcing and feedback in climate models. Clim Dyn. doi:10.1007/s00382-012-1336-x
  58. Wetherald RT, Manabe S (1988) Cloud feedback processes in a general circulation model. J Atmos Sci 45:1397–1415CrossRefGoogle Scholar
  59. Winton M, Takahashi K, Held IM (2010) Importance of ocean heat uptake efficacy to transient climate change. J Clim 23:2333–2344CrossRefGoogle Scholar
  60. Wood R, Bretherton CS (2006) On the relationship between stratiform low cloud cover and lower-tropospheric stability. J Clim 19:6425–6432CrossRefGoogle Scholar
  61. Wyant MC, Bretherton CS, Blossey PN, Khairoutdinov M (2012) Fast cloud adjustment to increasing CO2 in a superparameterized climate model. J Adv Model Earth Syst 4. doi:10.1029/2011MS000092
  62. Yukimoto S, Yoshimura H, andT Sakami MH, Tsujino H, Hirabara M, Tanaka TY, Deushi M, Obata A, Nakano H, Adachi Y, Shindo E, Yabu S, Ose T, Kitoh A (2011) Meteorological Research Institute-Earth System Model Version 1—Model description. Tech. Rep. 64, Meteorological Research InstituteGoogle Scholar
  63. Zelinka MD, Hartmann DL (2010) Why is longwave cloud feedback positive? J Geophys Res 115. doi:10.1029/2010JD013817
  64. Zelinka MD, Klein SA, Hartmann DL (2012a) Computing and partitioning cloud feedbacks using cloud property histograms. Part I: cloud radiative kernels. J Clim 25:3715–3735CrossRefGoogle Scholar
  65. Zelinka MD, Klein SA, Hartmann DL (2012b) Computing and partitioning cloud feedbacks using cloud property histograms. Part II: attribution to changes in cloud amount, altitude, and optical depth. J Clim 25:3736–3754CrossRefGoogle Scholar
  66. Zhang MH, Hack JJ, Kiehl JT, Cess RD (1994) Diagnostic study of climate feedback processes in atmospheric general circulation models. J Geophys Res 99:5525–5537CrossRefGoogle Scholar
  67. Zhang Y, Stevens B, Medeiros B, Ghil M (2009) Low-cloud fraction, lower-tropospheric stability, and large-scale divergence. J Clim 22:4827–4844CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lorenzo Tomassini
    • 1
  • Olivier Geoffroy
    • 2
  • Jean-Louis Dufresne
    • 3
  • Abderrahmane Idelkadi
    • 3
  • Chiara Cagnazzo
    • 4
  • Karoline Block
    • 1
  • Thorsten Mauritsen
    • 1
  • Marco Giorgetta
    • 1
  • Johannes Quaas
    • 5
  1. 1.Max Planck Institute for MeteorologyHamburgGermany
  2. 2.CNRM-GAME, Météo France, CNRSToulouseFrance
  3. 3.Laboratoire de Météorologie DynamiqueIstitut Pierre Simon Laplace (LMD/IPSL)ParisFrance
  4. 4.Istituto di Scienze dell’Atmosfera e del Clima, CNRRomeItaly
  5. 5.Meteorological InstituteUniversity of LeipzigLeipzigGermany

Personalised recommendations