Skip to main content

Spring-summer temperatures since AD 1780 reconstructed from stable oxygen isotope ratios in white spruce tree-rings from the Mackenzie Delta, northwestern Canada

Abstract

High-latitude δ18O archives deriving from meteoric water (e.g., tree-rings and ice-cores) can provide valuable information on past temperature variability, but stationarity of temperature signals in these archives depends on the stability of moisture source/trajectory and precipitation seasonality, both of which can be affected by atmospheric circulation changes. A tree-ring δ18O record (AD 1780–2003) from the Mackenzie Delta is evaluated as a temperature proxy based on linear regression diagnostics. The primary source of moisture for this region is the North Pacific and, thus, North Pacific atmospheric circulation variability could potentially affect the tree-ring δ18O-temperature signal. Over the instrumental period (AD 1892–2003), tree-ring δ18O explained 29 % of interannual variability in April–July minimum temperatures, and the explained variability increases substantially at lower-frequencies. A split-period calibration/verification analysis found the δ18O-temperature relation was time-stable, which supported a temperature reconstruction back to AD 1780. The stability of the δ18O-temperature signal indirectly implies the study region is insensitive to North Pacific circulation effects, since North Pacific circulation was not constant over the calibration period. Simulations from the NASA-GISS ModelE isotope-enabled general circulation model confirm that meteoric δ18O and precipitation seasonality in the study region are likely insensitive to North Pacific circulation effects, highlighting the paleoclimatic value of tree-ring and possibly other δ18O records from this region. Our δ18O-based temperature reconstruction is the first of its kind in northwestern North America, and one of few worldwide, and provides a long-term context for evaluating recent climate warming in the Mackenzie Delta region.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Anchukaitis K, D’Arrigo R, Andreu-Hayles L et al (2012) Tree-ring reconstructed summer temperatures from northwestern North America during the last nine centuries. J Clim. doi:10.1175/JCLI-D-11-00139.1

  2. Anderson L, Abbott MB, Finney BP, Burns SJ (2005) Regional atmospheric circulation change in the North Pacific during the Holocene inferred from lacustrine carbonate oxygen isotopes, Yukon Territory, Canada. Quat Res 64:21–35

    Article  Google Scholar 

  3. Andreu-Hayles L, D’Arrigo R, Anchukaitis KJ, Beck PSA, Frank D, Goetz S (2011) Varying boreal forest response to Arctic environmental change at the Firth River, Alaska. Environ Res Lett 6. doi:10.1088/1748-9326/6/4/045503

  4. Augustin L, Barbante C, Barnes PRF et al (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628

    Article  Google Scholar 

  5. Ballantyne AP, Rybczynski N, Baker PA, Harringtion CR, White D (2006) Pliocene Arctic temperature constraints from the growth rings and isotopic composition of fossil larch. Palaeogeogr Palaeoclimatol Palaeoecol 242:188–200

    Article  Google Scholar 

  6. Ballantyne AP, Greenwood DR, Sinninghe-Damsté JS, Csank AZ, Eberle JJ, Rybczynski N (2010) Significantly warmer Arctic surface temperatures during the Pliocene indicated by multiple independent proxies. Geology 38:603–606

    Article  Google Scholar 

  7. Barber VA, Juday GP, Finney BP (2000) Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405:668–673

    Article  Google Scholar 

  8. Barber VA, Juday GP, Finney BP, Wilmking M (2004) Reconstruction of summer temperatures in interior Alaska from tree-ring proxies: evidence for changing synoptic climate regimes. Clim Chang 63:91–120

    Article  Google Scholar 

  9. Barbour MM, Andrews TJ, Farquhar GD (2001) Correlations between oxygen isotope ratios of wood constituents of Quercus and Pinus samples from around the world. Aust J Plant Physiol 28:335–348

    Google Scholar 

  10. Bard E, Raisbeck G, Yiou F, Jouzel J (2000) Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus B 52:985–992

    Article  Google Scholar 

  11. Bégin C, Michaud Y, Archambault S (2000) Tree-ring evidence of recent climate changes in the Mackenzie Basin, Northwest Territories. Geological Survey of Canada Bulletin 547:65–77

    Google Scholar 

  12. Berkelhammer M, Stott LD (2012) Secular temperature trends for the southern Rocky Mountains over the last five centuries. Geophys Res Lett 39. doi:10.1029/2012GL052447

  13. Birks SJ, Edwards TWD (2009) Atmospheric circulation controls on precipitation isotope-climate relations in western Canada. Tellus B 61:566–576

    Article  Google Scholar 

  14. Boettger T, Haupt M, Knöller K et al (2007) Wood cellulose preparation methods and mass spectrometric analyses of δ13C, δ18O, and nonexchangeable δ2H values in cellulose, sugar, and starch: an interlaboratory comparison. Anal Chem 79:4603–4612

    Article  Google Scholar 

  15. Bowen GJ, Revenaugh J (2003) Interpolating the isotopic composition of modern meteoric precipitation. Water Resour Res 39. doi:10.1029/2003WR002086

  16. Bradley RS (2011) High-resolution paleoclimatology. In: Hughes MK, Swetnam TW, Diaz H (eds) Dendroclimatology: progress and prospects. Springer, New York, pp 3–15

    Chapter  Google Scholar 

  17. Brendel O, Iannetta PPM, Stewart D (2000) A rapid and simple method to isolate pure alpha-cellulose. Phytochem Anal 11:7–10

    Article  Google Scholar 

  18. Briffa KR (2000) Annual climate variability in the Holocene: interpreting the message of ancient trees. Quat Sci Rev 19:87–105

    Article  Google Scholar 

  19. Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shiyatov SG, Vaganov EA (1998) Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391:678–682

    Article  Google Scholar 

  20. Briffa KR, Osborn TJ, Schweingruber FH, Jones PD, Shiyatov SG, Vaganov EA (2002) Tree-ring width and density data around the Northern Hemisphere: part 1, local and regional climate signals. Holocene 12:737–757

    Article  Google Scholar 

  21. Büntgen U, Tegel W, Nicolussi K et al (2011) 2500 years of European climate variability and human susceptibility. Science 331:578–582

    Article  Google Scholar 

  22. Burn CR (1997) Cryostratigraphy, paleogeography, and climate change during the early Holocene warm interval, western Arctic coast, Canada. Can J Earth Sci 34:912–925

    Article  Google Scholar 

  23. Burns BM (1973) The climate of the Mackenzie Valley-Beaufort Sea. Environment Canada, Toronto

    Google Scholar 

  24. Compo GP, Whitaker JS, Sardeshmukh PD et al (2011) The Twentieth Century Reanalysis Project. Q J Royal Meteorol Soc 137:1–28

    Article  Google Scholar 

  25. Cook ER (1985) A time series analysis approach to tree ring standardization. PhD dissertation. University of Arizona, Tuscon

    Google Scholar 

  26. Cook ER, Kairiukstis LA (1990) Methods of dendrochronology: applications in the environmental sciences. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  27. Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull 41:45–53

    Google Scholar 

  28. Csank AZ, Patterson WP, Eglington BM, Rybczynski N, Basinger JF (2011) Climate variability in the Early Pliocene Arctic: annually resolved evidence from stable isotope values of sub-fossil wood, Ellesmere Island, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 308:339–349

    Article  Google Scholar 

  29. Cullen LE, Grierson PF (2007) A stable oxygen, but not carbon, isotope chronology of Callitris columellaris reflects recent climate change in north-western Australia. Clim Chang 85:213–229

    Article  Google Scholar 

  30. D’Arrigo R, Kaufmann RK, Davi N et al (2004) Thresholds for warming-induced growth decline at elevational tree line in the Yukon Territory, Canada. Glob Biogeochem Cycles 18. doi:10.1029/2004GB002249

  31. D’Arrigo R, Wilson R, Deser C et al (2005) Tropical-North Pacific climate linkages over the past four centuries. J Clim 18:5253–5265

    Article  Google Scholar 

  32. D’Arrigo R, Wilson R, Jacoby G (2006) On the long-term context for late twentieth century warming. J Geophys Res 111. doi:10.1029/2005JD006352

  33. D’Arrigo R, Wilson R, Liepert B, Cherubini P (2008) On the “Divergence Problem” in northern forests: a review of the tree-ring evidence and possible causes. Glob Planet Chang 60:289–305

    Article  Google Scholar 

  34. D’Arrigo R, Jacoby G, Buckley B et al (2009) Tree growth and inferred temperature variability at the North American arctic treeline. Glob Planet Chang 65:71–82

    Article  Google Scholar 

  35. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Article  Google Scholar 

  36. Dansgaard W, Johnsen SJ, Gundestrup NS et al (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364:218–220

    Article  Google Scholar 

  37. Davi NK, Jacoby GC, Wiles GC (2003) Boreal temperature variability inferred from maximum latewood density and tree-ring width data, Wrangell Mountain region, Alaska. Quat Res 60:252–262

    Article  Google Scholar 

  38. Dyke LD (2000) Climate of the Mackenzie River valley. In: Dyke LD, Brooks GR (eds) The physical environment of the Mackenzie Valley, Northwest territories: a baseline for the assessment of environmental change. Geological Survey of Canada, Ottawa

    Google Scholar 

  39. Edwards TWD, Wolfe BB, MacDonald GM (1996) Influence of changing atmospheric circulation on precipitation δ18O-temperature relations in Canada during the Holocene. Quat Res 46:211–218

    Article  Google Scholar 

  40. Edwards TWD, Birks SJ, Luckman BH, MacDonald GM (2008) Climatic and hydrologic variability during the past millennium in the eastern Rocky Mountains and northern Great Plains of western Canada. Quat Res 70:188–197

    Article  Google Scholar 

  41. Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295:2250–2253

    Article  Google Scholar 

  42. Esper J, Frank D, Büntgen U, Verstege A, Hantemirov RM, Kirdyanov AV (2010) Trends and uncertainties in Siberian indicators of 20th century warming. Glob Chang Biol 16:386–398

    Article  Google Scholar 

  43. Field RD (2010) Observed and modeled controls on precipitation δ18O over Europe: From local temperature to the Northern Annular Mode. J Geophys Res 115. doi:10.1029/2009JD013370

  44. Field RD, Moore GWK, Holdsworth G, Schmidt GA (2010) A GCM-based analysis of circulation controls on δ18O in the southwest Yukon, Canada: Implications for climate reconstructions in the region. Geophys Res Lett 37. doi:10.1029/2009GL041408

  45. Fisher DA, Wake C, Kreutz K et al (2004) Stable isotope records from Mount Logan, Eclipse ice cores and nearby Jellybean Lake. Water cycle of the North Pacific over 2000 years and over five vertical kilometers: sudden shifts and tropical teleconnections. Géog Phys Quatern 58:337–352

    Google Scholar 

  46. Fricke HC, O’Neil JR (1999) The correlation between 18O/16O ratios of meteoric water and surface temperature: its use in investigating terrestrial climate change over geologic time. Earth Planet Sci Lett 170:181–196

    Article  Google Scholar 

  47. Gagen M, McCarroll D, Edouard J-L (2006) Combining ring width, density and stable carbon isotope proxies to enhance the climate signal in tree-rings: an example from the Southern French Alps. Clim Chang 78:363–379

    Article  Google Scholar 

  48. Gagen M, McCarroll D, Loader NJ, Robertson I (2011) Stable isotopes in dendroclimatology: moving beyond “potential”. In: Hughes MK, Swetnam TW, Diaz HF (eds) Dendroclimatology: progress and prospects. Springer, New York, pp 147–172

    Chapter  Google Scholar 

  49. Gao C, Robock A, Ammann C (2008) Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. J Geophys Res 113. doi:10.1029/2008JD010239

  50. Garfinkel HL, Brubaker LB (1980) Modern climate-tree-growth relationships and climatic reconstruction in sub-Arctic Alaska. Nature 286:872–874

    Article  Google Scholar 

  51. Gaudinski JB, Dawson TE, Quideau S et al (2005) Comparative analysis of cellulose preparation techniques for use with 13C, 14C, and 18O isotopic measurements. Anal Chem 77:7212–7224

    Article  Google Scholar 

  52. Gray J, Thompson P (1976) Climatic information from 18O/16O ratios of cellulose in tree rings. Nature 262:481–482

    Article  Google Scholar 

  53. Green JW (1963) Wood cellulose. In: Whistler RL (ed) Methods in carbohydrate chemistry, III. Academic Press, New York, pp 9–21

    Google Scholar 

  54. Hammarlund D, Barnekow L, Birks HJB, Buchardt B, Edwards TWD (2002) Holocene changes in atmospheric circulation recorded in the oxygen-isotope stratigraphy of lacustrine carbonates from northern Sweden. Holocene 12:339–351

    Article  Google Scholar 

  55. Hilasvuori E, Berninger F, Sonninen E, Tuomenvirta H, Jungner H (2009) Stability of climate signal in carbon and oxygen isotope records and ring width from Scots pine (Pinus sylvestris L.) in Finland. J Quat Sci 24:469–480

    Article  Google Scholar 

  56. Holdsworth G, Krouse HR, Nosal M (1992) Ice core climate signals from Mount Logan, Yukon, A.D. 1700–1987. In: Bradley RS, Jones PD (eds) Climate since A.D. 1500. Routledge, London, pp 483–504

    Google Scholar 

  57. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78

    Google Scholar 

  58. Holzkämper S, Tillman PK, Kuhry P, Esper J (2012) Comparison of stable carbon and oxygen isotopes in Picea glauca tree rings and Sphagnum fuscum moss remains from subarctic Canada. Quat Res 78:295–302

    Article  Google Scholar 

  59. Hughes MK (2011) Dendroclimatology in high-resolution paleoclimatology. In: Hughes MK, Swetnam TW, Diaz HF (eds) Dendroclimatology: progress and prospects. Springer, New York, pp 17–34

    Chapter  Google Scholar 

  60. Jacoby GC, D’Arrigo R (1989) Reconstructed northern hemisphere annual temperature since 1671 based on high-latitude tree-ring data from North America. Clim Chang 14:39–59

    Article  Google Scholar 

  61. Jacoby GC, D’Arrigo RD (1995) Tree ring width and density evidence of climatic and potential forest change in Alaska. Global Biogeochem Cycles 9:227–234

    Article  Google Scholar 

  62. Jansen E, Overpeck J, Briffa KR et al (2007) Palaeoclimate. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 433–497

    Google Scholar 

  63. Johnsen SJ, Dahl-Jensen D, Gundestrup N et al (2001) Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. J Quat Sci 16:299–307

    Article  Google Scholar 

  64. Jones PD, Briffa KR, Osborn TJ et al (2009) High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. Holocene 19:3–49

    Article  Google Scholar 

  65. Jouzel J (1999) Calibrating the isotopic paleothermometer. Science 286:910–911

    Article  Google Scholar 

  66. Jouzel J, Lorius C, Petit JR et al (1987) Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160,000 years). Nature 329:403–408

    Article  Google Scholar 

  67. Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-Year Reanalysis Project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  68. Kaufman DS, Schneider DP, McKay NP et al (2009) Recent warming reverses long-term Arctic cooling. Science 325:1236–1239

    Article  Google Scholar 

  69. Kokelj SV, Burn CR (2005) Near-surface ground ice in sediments of the Mackenzie Delta, Northwest Territories, Canada. Permafr Periglac Process 16:291–303

    Article  Google Scholar 

  70. Lackman GM, Gyakum JR (1996) The synoptic- and planetary-scale signatures of precipitating systems over the Mackenzie River Basin. Atmos Ocean 34:647–674

    Article  Google Scholar 

  71. Lawrimore JH, Menne MJ, Gleason BE et al. (2011) An overview of the Global Historical Climatology Network monthly mean temperature data set, Version 3. J Geophys Res 116. doi:10.1029/2011JD016187

  72. Leavitt SW (2010) Tree-ring C-H–O isotope variability and sampling. Sci Total Environ 408:5244–5253

    Article  Google Scholar 

  73. Leavitt SW, Long A (1984) Sampling strategy for stable carbon isotope analysis of tree-rings in pine. Nature 311:145–147

    Article  Google Scholar 

  74. LeGrande AN, Schmidt GA (2007) Sources of Holocene variability of oxygen isotopes in paleoclimate archives. Clim Past 5:441–455

    Article  Google Scholar 

  75. Libby LM, Pandolfi LJ (1974) Temperature dependence of isotope ratios in tree rings. Proc Natl Acad Sci USA 71:2482–2486

    Article  Google Scholar 

  76. Liu Z, Kennedy CD, Bowen GJ (2011) Pacific/North American teleconnection controls on precipitation isotope ratios across the contiguous United States. Earth Planet Sci Lett 310:319–326

    Article  Google Scholar 

  77. Luckman BH, Wilson RJS (2005) Summer temperatures in the Canadian Rockies during the last millennium: a revised record. Clim Dynam 24:131–144

    Article  Google Scholar 

  78. Mackay JR (1983) Downward water movement into frozen ground, western arctic coast, Canada. Can J Earth Sci 20:120–134

    Article  Google Scholar 

  79. Mann ME, Zhang Z, Hughes MK et al (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci USA 105:13252–13257

    Article  Google Scholar 

  80. McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23:771–801

    Article  Google Scholar 

  81. McGuire AD, Ruess RW, Lloyd A, Yarie J, Clein JS, Juday GP (2010) Vulnerability of white spruce tree growth in interior Alaska in response to climate variability: dendrochronological, demographic, and experimental perspectives. Can J For Res 40:1197–1209

    Article  Google Scholar 

  82. Mock CJ, Bartlein PJ, Anderson PM (1998) Atmospheric circulation patterns and spatial climatic variations in Beringia. Int J Climatol 18:1085–1104

    Article  Google Scholar 

  83. Overpeck J, Hughen KA, Hardy D et al (1997) Arctic environmental change of the last four centuries. Science 278:1251–1256

    Article  Google Scholar 

  84. Petrone RM, Rouse WR (2000) Synoptic controls on the surface energy and water budgets in sub-arctic regions of Canada. Int J Climatol 20:1149–1165

    Article  Google Scholar 

  85. Pisaric MFJ, Carey SK, Kokelj S V, Youngblut D (2007) Anomalous 20th century tree growth, Mackenzie Delta, Northwest Territories, Canada. Geophys Res Lett 34. doi:10.1029/2006GL029139

  86. Porter TJ, Middlestead P (2012) On estimating the precision of stable isotope ratios in processed tree-rings. Dendrochronologia 30:239–242

    Article  Google Scholar 

  87. Porter TJ, Pisaric MFJ (2011) Temperature-growth divergence in white spruce forests of Old Crow Flats, Yukon Territory, and adjacent regions of northwestern North America. Glob Chang Biol 17:3418–3430

    Article  Google Scholar 

  88. Porter TJ, Pisaric MFJ, Kokelj SV, Edwards TWD (2009) Climatic signals in δ13C and δ18O of tree-rings from white spruce in the Mackenzie Delta region, northern Canada. Arct Antarct Alp Res 41:497–505

    Article  Google Scholar 

  89. Rayner NA, Parker DE, Horton EB et al. (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108. doi:10.1029/2002JD002670

  90. Roden JS, Lin G, Ehleringer JR (2000) A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim Cosmochim Acta 64:21–35

    Article  Google Scholar 

  91. Rouse WR (1984) Microclimate at Arctic tree line, 1. Radiation balance of tundra and forest. Water Resour Res 20:57–66

    Article  Google Scholar 

  92. Saurer M, Schweingruber FH, Vaganov EA, Shiyatov SG, Siegwolf R (2002) Spatial and temporal oxygen isotope trends at the northern tree-line in Eurasia. Geophys Res Lett 29. doi:10.1029/2001GL013739

  93. Saurer M, Kress A, Leuenberger M, Rinne KT, Treydte KS, Siegwolf RTW (2012) Influence of atmospheric circulation patterns on the oxygen isotope ratio of tree rings in the Alpine region. J Geophys Res 117. doi:10.1029/2011JD016861

  94. Schmidt GA, Hoffmann G, Shindell DT, Hu Y (2005) Modeling atmospheric stable water isotopes and the potential for constraining cloud processes and stratosphere-troposphere water exchange. J Geophys Res 110. doi:10.1029/2005JD005790

  95. Schmidt GA, Ruedy R, Hansen JE et al (2006) Present-day atmospheric simulations using GISS ModelE: comparison to in situ, satellite, and reanalysis data. J Clim 19:153–192

    Article  Google Scholar 

  96. Seftigen K, Linderholm HW, Loader NJ, Liu Y, Young GHF (2011) The influence of climate on 13C/12C and 18O/16O ratios in tree ring cellulose of Pinus sylvestris L. growing in the central Scandinavian Mountains. Chem Geol 286:84–93

    Google Scholar 

  97. Serreze MC, Barry RG (2005) The arctic climate system. Cambridge University Press, Cambridge

    Book  Google Scholar 

  98. Sidorova OV, Siegwolf RTW, Saurer M, Naurzbaev MM, Vaganov EA (2008) Isotopic composition (δ13C, δ18O) in wood and cellulose of Siberian larch trees for early Medieval and recent periods. J Geophys Res 113. doi:10.1029/2007JG000473

  99. Sodemann H, Schweirz C, Wernli H (2008) Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. J Geophys Res 113. doi:10.1029/2007JD008503

  100. Speer JH (2010) Fundamentals of tree-ring research. University of Arizona Press, Tucson

    Google Scholar 

  101. Sternberg LSL (1989) Oxygen and hydrogen isotope measurements in plant cellulose analysis. In: Linskens HF, Jackson JF (eds) Modern methods of plant analysis: plant fibers. Springer, New York, pp 89–99

    Google Scholar 

  102. Sturm C, Zhang Q, Noone D (2010) An introduction to stable water isotopes in climate models: benefits of forward proxy modelling for paleoclimatology. Clim Past 6:115–129

    Article  Google Scholar 

  103. Szeicz JM, MacDonald GM (1995) Dendroclimatic reconstruction of summer temperatures in northwestern Canada since A.D. 1638 based on age-dependent modelling. Quat Res 44:257–266

    Article  Google Scholar 

  104. Szeicz JM, MacDonald GM (1996) A 930-year ring-width chronology from moisture-sensitive white spruce (Picea glauca Moench) in northwestern Canada. Holocene 6:345–351

    Article  Google Scholar 

  105. Szeto KK, Stewart RE, Yau MK, Gyakum J (2008) The Mackenzie climate system: a synthesis of MAGS atmospheric research. In: Woo M (ed) Cold region atmospheric and hydrologic studies: the Mackenzie GEWEX experience. Volume 1: atmospheric dynamics. Springer, New York, pp 23–50

    Chapter  Google Scholar 

  106. Trenberth KE, Hurrell JW (1994) Decadal atmosphere-ocean variations in the Pacific. Clim Dynam 9:303–319

    Article  Google Scholar 

  107. Treydte KS, Schleser GH, Helle G et al (2006) The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature 440:1179–1182

    Article  Google Scholar 

  108. Uppala SM, Kållberg PW, Simmons AJ et al (2005) The ERA-40 re-analysis. Q J Royal Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  109. Van Oldenborgh GJ (2000) What caused the onset of the 1997–98 El Niño? Mon Weather Rev 128:2601–2607

    Article  Google Scholar 

  110. Viau AE, Ladd M, Gajewski K (2012) The climate of North America during the past 2000 years reconstructed from pollen data. Glob Planet Chang 84–85:75–83

    Article  Google Scholar 

  111. Wahl ER, Ammann CM (2007) Robustness of the Mann, Bradley, Hughes reconstruction of Northern Hemisphere surface temperatures: examination of criticisms based on the nature and processing of proxy climate evidence. Clim Chang 85:33–69

    Article  Google Scholar 

  112. Wahl HE, Fraser DB, Harvey RC, Maxwell JB (1987) Climate of Yukon. Climatological studies, vol 40. Environment Canada, Ottawa

    Google Scholar 

  113. Werner RA, Brand WA (2001) Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun Mass Spec 15:501–519

    Article  Google Scholar 

  114. Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Climat App Meteorol 23:201–213

    Article  Google Scholar 

  115. Wilmking M, Juday GP, Barber VA, Zald HSJ (2004) Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Glob Chang Biol 10:1724–1736

    Article  Google Scholar 

  116. Wilson R, D’Arrigo R, Buckley B et al (2007) A matter of divergence: Tracking recent warming at hemispheric scales using tree ring data. J Geophys Res 112. doi:10.1029/2006JD008318

  117. Youngblut D, Luckman B (2008) Maximum June-July temperatures in the southwest Yukon over the last 300 years reconstructed from tree rings. Dendrochronologia 25:153–166

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this project is gratefully acknowledged: Aboriginal Affairs and Northern Development Canada grant; NSERC Discovery grant and Northern Supplement (M. Pisaric); Northern Scientific Training Program (T. Porter); NSERC Postgraduate Scholarship (T. Porter). Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. We also thank two anonymous reviewers for their helpful comments which improved the final manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Trevor J. Porter.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1180 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Porter, T.J., Pisaric, M.F.J., Field, R.D. et al. Spring-summer temperatures since AD 1780 reconstructed from stable oxygen isotope ratios in white spruce tree-rings from the Mackenzie Delta, northwestern Canada. Clim Dyn 42, 771–785 (2014). https://doi.org/10.1007/s00382-013-1674-3

Download citation

Keywords

  • Mackenzie Delta
  • White spruce tree-rings
  • Stable oxygen isotope ratios
  • Atmospheric circulation
  • Temperature reconstruction
  • NASA-GISS ModelE