Climate Dynamics

, Volume 42, Issue 1–2, pp 271–290 | Cite as

Impacts of Indian Ocean SST biases on the Indian Monsoon: as simulated in a global coupled model

  • Chloé Prodhomme
  • Pascal Terray
  • Sébastien Masson
  • Takeshi Izumo
  • Tomoki Tozuka
  • Toshio Yamagata


In this study, the impact of the ocean–atmosphere coupling on the atmospheric mean state over the Indian Ocean and the Indian Summer Monsoon (ISM) is examined in the framework of the SINTEX-F2 coupled model through forced and coupled control simulations and several sensitivity coupled experiments. During boreal winter and spring, most of the Indian Ocean biases are common in forced and coupled simulations, suggesting that the errors originate from the atmospheric model, especially a dry islands bias in the Maritime Continent. During boreal summer, the air-sea coupling decreases the ISM rainfall over South India and the monsoon strength to realistic amplitude, but at the expense of important degradations of the rainfall and Sea Surface Temperature (SST) mean states in the Indian Ocean. Strong SST biases of opposite sign are observed over the western (WIO) and eastern (EIO) tropical Indian Ocean. Rainfall amounts over the ocean (land) are systematically higher (lower) in the northern hemisphere and the south equatorial Indian Ocean rainfall band is missing in the control coupled simulation. During boreal fall, positive dipole-like errors emerge in the mean state of the coupled model, with warm and wet (cold and dry) biases in the WIO (EIO), suggesting again a significant impact of the SST errors. The exact contributions and the distinct roles of these SST errors in the seasonal mean atmospheric state of the coupled model have been further assessed with two sensitivity coupled experiments, in which the SST biases are replaced by observed climatology either in the WIO (warm bias) or EIO (cold bias). The correction of the WIO warm bias leads to a global decrease of rainfall in the monsoon region, which confirms that the WIO is an important source of moisture for the ISM. On the other hand, the correction of the EIO cold bias leads to a global improvement of precipitation and circulation mean state during summer and fall. Nevertheless, all these improvements due to SST corrections seem drastically limited by the atmosphere intrinsic biases, including prominently the unimodal oceanic position of the ITCZ (Inter Tropical Convergence Zone) during summer and the enhanced westward wind stress along the equator during fall.


Indian Monsoon Coupled climate model Model systematic errors Ocean atmosphere interaction Arabian Sea 



A part of this research was supported by the Japan Science and Technology Agency/Japan International Cooperation Agency through the Science and Technology Research Partnership for Sustainable Development (SATREPS). This work was performed using HPC resources from GENCI-IDRIS (Grant 2012-x2012016895).


  1. Dee DP et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:656, 553–597, Part AGoogle Scholar
  2. Alessandri A, Gualdi S, Polcher J, Navarra A (2007) Effects of land surface–vegetation on the boreal summer surface climate of a GCM. J Clim 20:255–278. doi: 10.1175/JCLI3983.1 CrossRefGoogle Scholar
  3. Annamalai H (2010) Moist dynamical linkage between the Equatorial Indian Ocean and the South Asian monsoon trough. J Atmos Sci 67(3):589–610CrossRefGoogle Scholar
  4. Annamalai H, Murtugudde R (2004) Role of the Indian Ocean in regional climate variability. In: Wang C, Xie S-P, Carton JA (eds) Earth climate: the ocean-atmosphere interaction, vol 147. AGU Geophysical Monograph, Washington, DC, pp 213–246CrossRefGoogle Scholar
  5. Annamalai H, Liu P, Xie S-P (2005) Southwest Indian Ocean SST variability: its local effect and remote influence on Asian monsoons. J Clim 18:4150–4167CrossRefGoogle Scholar
  6. Annamalai H, Hamilton K, Sperber KR (2007) The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J Clim 20:1071–1092. doi: 10.1175/JCLI4035.1 CrossRefGoogle Scholar
  7. Bollasina MA, Ming Y (2012) The general circulation model precipitation bias over the southwestern equatorial Indian Ocean and its implications for simulating the South Asian monsoon. Clim Dyn Online. doi: 10.1007/s00382-012-1347-7 Google Scholar
  8. Bollasina MA, Nigam S (2009) Indian Ocean SST, evaporation, and precipitation during the South Asian summer monsoon in IPCCAR4 coupled simulations. Clim Dyn 33:1017–1032. doi: 10.1007/s00382-008-0477-4 CrossRefGoogle Scholar
  9. Boschat G, Terray P, Masson S (2011) Interannual relationships between Indian summer monsoon and Indo-Pacific coupled modes of variability during recent decades. Clim Dyn 37:1019–1043. doi: 10.1007/s00382-010-0887-y CrossRefGoogle Scholar
  10. Boschat G, Terray P, Masson S (2012) Robustness of SST teleconnections and precursory patterns associated with the Indian summer monsoon. Clim Dyn 38:2143–2165. doi: 10.1007/s00382-011-1100-7 CrossRefGoogle Scholar
  11. Carton JA, Giese BS (2008) A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon Weather Rev 136:2999–3017CrossRefGoogle Scholar
  12. Chang C-P et al (2006) Climate fluctuations of tropical coupled systems—the role of ocean dynamics. J Clim 19:5122–5174CrossRefGoogle Scholar
  13. Cherchi A, Navarra A (2007) Sensitivity of the Asian summer monsoon to the horizontal resolution: differences between AMIP-type and coupled model experiments. Clim Dyn 28:273–290. doi: 10.1007/s00382-006-0183-z CrossRefGoogle Scholar
  14. Chung CE, Ramanathan V (2006) Weakening of North Indian SST gradients and the monsoon rainfall in India and the Sahel. J Clim 19:2036–2045. doi: 10.1175/JCLI3820.1 CrossRefGoogle Scholar
  15. Compo GP, Whitaker JS, Sardeshmukh PD (2006) Feasibility of a 100-year reanalysis using only surface pressure data. Bull Am Meteorol Soc 87:175–190. doi: 10.1175/BAMS-87-2-175 CrossRefGoogle Scholar
  16. Drbohlav H-KL, Gualdi S, Navarra A (2007) A diagnostic study of the Indian Ocean Dipole mode in El Niño and Non–El Niño years. J Clim 20:2961–2977. doi: 10.1175/JCLI4153.1 CrossRefGoogle Scholar
  17. Fischer A, Terray P, Guilyardi E, Delecluse P (2005) Two independent triggers for the Indian Ocean Dipole/zonal mode in a coupled GCM. J Clim 18:3428–3449CrossRefGoogle Scholar
  18. Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106(449):447–462. doi: 10.1002/qj.49710644905 CrossRefGoogle Scholar
  19. Gimeno L, Drumond A, Nieto R, Trigo RM, Stohl A (2010) On the origin of continental precipitation. Geophys Res Lett 37(13):1–7. doi: 10.1029/2010GL043712 CrossRefGoogle Scholar
  20. Gualdi S, Guilyardi E, Navarra A, Masina S, Delecluse P (2003a) The interannual variability in the tropical Indian Ocean as simulated by a CGCM. Clim Dyn 20:567–582Google Scholar
  21. Gualdi S, Navarra A, Guilyardi E, Delecluse P (2003b) Assessment of the tropical Indo-Pacific climate in the SINTEX CGCM. Ann Geophys 46:1–26Google Scholar
  22. Guilyardi E, Delecluse P, Gualdi S, Navarra A (2003) Mechanisms for ENSO phase change in a coupled GCM. J Clim 16:1141–1158CrossRefGoogle Scholar
  23. Huffman GJ et al (1997) The global precipitation climatology project (GPCP) combined precipitation dataset. Bull Am Meteorol Soc 78:5–20CrossRefGoogle Scholar
  24. Izumo T, Montégut CB, Luo J–J, Behera SK, Masson S, Yamagata T (2008) The role of the western Arabian Sea upwelling in Indian monsoon rainfall variability. J Clim 21:5603–5623. doi: 10.1175/2008JCLI2158.1 CrossRefGoogle Scholar
  25. Izumo T, Vialard J, Lengaigne M, De Boyer Montegut C, Behera SK, Luo J–J, Cravatte S, Masson S, Yamagata T (2010) Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nat Geosci 3(3):168–172CrossRefGoogle Scholar
  26. Joseph P, Eischeid JK, Pyle RJ (1994) Interannual variability of the onset of the Indian summer monsoon and its association with atmospheric features, El Niño, and sea surface temperature anomalies. J Clim 7:81–105CrossRefGoogle Scholar
  27. Joseph PV, Sooraj KP, Rajan CK (2003) Conditions leading to monsoon onset over Kerala and the associated Hadley cell. Mausam 54(1):155–164Google Scholar
  28. Joseph S, Sahai AK, Goswami BN, Terray P, Masson S, Luo J–J (2012) Possible role of warm SST bias in the simulation of boreal summer monsoon in SINTEX-F2 coupled model. Clim Dyn 38:1561–1576. doi: 10.1007/s00382-011-1264-1 CrossRefGoogle Scholar
  29. Koch-Larrouy A, Madec G, Bouruet-Aubertot P, Gerkema T, Bessières L, Molcard R (2007) On the transformation of Pacific Water into Indonesian throughflow water by internal tidal mixing. Geophys Res Lett 34:L04604. doi: 10.1029/2006GL028405 CrossRefGoogle Scholar
  30. Kripalani RH, Oh JH, Kulkarni A, Sabade SS, Chaudhari HS (2007) South Asian summer monsoon precipitation variability: coupled climate model simulations and projections under IPCC AR4. Theor Appl Climatol 90:133–159. doi: 10.1007/s00704-006-0282-0 CrossRefGoogle Scholar
  31. Krishnan R, Zhang C, Sugi M (2000) Dynamics of breaks in the Indian summer monsoon. J Atmos Sci 1969:1354–1372CrossRefGoogle Scholar
  32. Kumar KK, Hoerling M, Rajagopalan B (2005) Advancing dynamical predictions of the Indian monsoon rainfall. Geophys Res Lett 32:L08704. doi: 10.1029/2004GL021979 Google Scholar
  33. Kummerow C et al (2001) The evolution of the goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J Appl Meteorol 40:1801–1820CrossRefGoogle Scholar
  34. Levine RC, Turner AG (2012) Dependence of Indian Monsoon rainfall on moisture fluxes across the Arabian Sea and the impact of coupled model sea surface temperature biases. Clim Dyn 38:2167–2190. doi: 10.1007/s00382-011-1096-z CrossRefGoogle Scholar
  35. Li T, Wang B, Chang C-P, Zhang Y (2003) A theory for the Indian Ocean Dipole–zonal mode. J Atmos Sci 60:2119–2135CrossRefGoogle Scholar
  36. Lin J-L (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs: ocean–atmosphere feedback analysis. J Clim 20:4497–4525CrossRefGoogle Scholar
  37. Loschnigg J, Meehl G, Webster P, Arblaster J, Compo G (2003) The Asian Monsoon, the tropical biennial oscillation, and the Indian Ocean zonal mode in the NCAR CSM. J Clim 16:1617–1642CrossRefGoogle Scholar
  38. Luo J–J, Masson S, Behera SK, Delecluse P, Gualdi S, Navarra A, Yamagata T (2003) South Pacific origin of the decadal ENSO-like variation as simulated by a coupled GCM. Geophys Res Lett 30:2250. doi: 10.1029/2003GL018649 CrossRefGoogle Scholar
  39. Luo JJ, Masson S, Behera SK, Shingu S, Yamagata T (2005) Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J Clim 18:4474–4497. doi: 10.1175/JCLI3526.1 CrossRefGoogle Scholar
  40. Luo J–J, Zhang R, Behera SK, Masumoto Y, Jin FF, Lukas R, Yamagata T (2010) Interaction between El Niño and Extreme Indian Ocean dipole. J Clim 23:726–742CrossRefGoogle Scholar
  41. Madec G (2008) NEMO ocean engine. Note du Pôle de modélisation, Institut Pierre-Simon Laplace (IPSL), France. No 27. ISSN No 1288-1619Google Scholar
  42. Madec G, Delecluse P, Imbard M, Levy C (1998) OPA 8.1 ocean general circulation model reference manual. Note du Pôle de modélisation, Institut Pierre-Simon Laplace (IPSL), France. No 11, 91 pp. Available at
  43. Masson S, Luo JJ, Madec G, Vialard J, Durand F, Gualdi S, Guilyardi E, Behera S, Delecluse P, et al (2005) Impact of barrier layer on winter-spring variability of the southeastern Arabian Sea. Geophys Res Lett 32: L07703, 1–4Google Scholar
  44. Masson S, Terray P, Madec G, Luo J–J, Yamagata T, Takahashi K (2012) Impact of intra-daily SST variability on ENSO characteristics in a coupled model. Clim Dyn 39:681–707. doi: 10.1007/s00382-011-1247-2 CrossRefGoogle Scholar
  45. Neale R, Slingo J (2003) The maritime continent and its role in the global climate: a GCM study. J Clim 16:834–848CrossRefGoogle Scholar
  46. Nordeng TE (1994) Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Research Dept. Tech. Memo. 206, European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom, 41 ppGoogle Scholar
  47. Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution blended analyses for sea surface temperature. J Clim 20:5473–5496CrossRefGoogle Scholar
  48. Roeckner E, Alfred S, Amala Y (1996) The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate. Max-Planck-Institut für Meteorologie. Report no. 218, 94 pp, HamburgGoogle Scholar
  49. Roeckner E, Baüml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S et al (2003) The atmospheric general circulation model ECHAM5: Part 1: model description. Max-Planck-Institut für Meteorologie, MPI-Report 353, HamburgGoogle Scholar
  50. Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2004) The atmospheric general circulation model ECHAM5 Part II: sensitivity of simulated climate to horizontal and vertical resolution. Max-Planck-Institute for Meteorology, MPI-Report 354, HamburgGoogle Scholar
  51. Schott FA, McCreary JP Jr (2001) The monsoon circulation of the Indian Ocean. Prog Oceanogr 51:1–123CrossRefGoogle Scholar
  52. Schott F, Fischer J, Garternicht U, Quadfasel D (1997) Summer monsoon response of the northern Somali Current, 1995. Geophys Res Lett 24:2565–2568CrossRefGoogle Scholar
  53. Shukla J, Hagedorn R, Hoskins B, Kinter J, Marotzke J, Miller M, Palmer TN, Slingo J (2009) Revolution in climate prediction is both necessary and possible: a declaration at the world modelling summit for climate prediction. Bull Am Meteorol Soc 90:175–178CrossRefGoogle Scholar
  54. Sijikumar S, Rajeev K (2012) Role of the Arabian Sea Warm Pool on the precipitation characteristics during the monsoon onset period. J Clim 25:1890–1899. doi: 10.1175/JCLI-D-11-00286.1 CrossRefGoogle Scholar
  55. Soman MK, Slingo JM (1997) Sensitivity of the Asian summer monsoon to aspects of sea-surface-temperature anomalies in the tropical Pacific. Q J R Meteorol Soc 123:309–336CrossRefGoogle Scholar
  56. Spencer H, Sutton RT, Slingo JM, Roberts JM, Black E (2005) The Indian Ocean climate and dipole variability in the Hadley centre coupled GCMs. J Clim 18:2286–2307CrossRefGoogle Scholar
  57. Terray P, Guilyardi E, Fischer AS, Delecluse P (2005) Dynamics of the Indian Monsoon and ENSO relationships in the SINTEX global coupled model. Clim Dyn 24:145–168CrossRefGoogle Scholar
  58. Terray P, Chauvin F, Douville H (2007) Impact of southeast Indian Ocean sea surface temperature anomalies on monsoon-ENSO- dipole variability in a coupled ocean-atmosphere model. Clim Dyn 28:553–580. doi: 10.1007/s00382-006-0192-y CrossRefGoogle Scholar
  59. Terray P, Kamala K, Masson S, Madec G, Sahai AK, Luo J–J, Yamagata T (2012) The role of the intra-daily SST variability in the Indian Monsoon variability and monsoon-ENSO–IOD relationships in a global coupled model. Clim Dyn 39:729–754. doi: 10.1007/s00382-011-1240-9 CrossRefGoogle Scholar
  60. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800CrossRefGoogle Scholar
  61. Timmermann R, Goosse H, Madec G, Fichefet T, Ethe C, Duliere V (2005) On the representation of high latitude processes in the ORCA-LIM global coupled sea ice-ocean model. Ocean Model 8(1–2):175–201CrossRefGoogle Scholar
  62. Valcke S (2006) OASIS3 user guide (prism_2-5). PRISM support initiative report No 3, 64 ppGoogle Scholar
  63. Wang B (2006) The Asian Monsoon. Springer/Praxis Publishing, New York, p 787Google Scholar
  64. Wang B, Wu R, Lau KM (2001) Interannual variability of the Asian summer monsoon: contrast between the Indian and the Western North Pacific–East Asian monsoons. J Clim 14:4073–4090CrossRefGoogle Scholar
  65. Wang B, Kang I, Lee J (2004) Ensemble simulations of Asian–Australian monsoon variability by 11 AGCMs. J Clim 17:803–818CrossRefGoogle Scholar
  66. Wang B, Ding QH, Fu XH, Kang I-S, Jin K, Shukla J, Doblas-Reyes F (2005) Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophysl Res Lett 32:L15711CrossRefGoogle Scholar
  67. Wang B, Lee JY, Kang IS, Shukla J, Kug JS, Kumar A, Schemm J, Luo JJ, Yamagata T, Park CK (2008) How accurately do coupled climate models predict the leading modes of Asian-Australian monsoon interannual variability? Clim Dyn 30:605–619. doi: 10.1007/s00382-007-0310-5 CrossRefGoogle Scholar
  68. Wentz FJ, Gentemann C, Smith D, Chelton D (2000) Satellite measurements of sea surface temperature through clouds. Science 288:847CrossRefGoogle Scholar
  69. Wu RG, Kirtman BP (2005) Roles of Indian and Pacific Ocean air-sea coupling in tropical atmospheric variability. Clim Dyn 25:155–170CrossRefGoogle Scholar
  70. Xavier PK, Marzin C, Goswami BN (2007) An objective definition of the Indian summer monsoon season and a new perspective on the ENSO-Monsoon relationship. Q J R Meteorol Soc 133:749–764CrossRefGoogle Scholar
  71. Yokoi T, Tozuka T, Yamagata T (2008) Seasonal variation of the Seychelles Dome. J Clim 21:3740–3754. doi: 10.1175/2008JCLI1957.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chloé Prodhomme
    • 1
    • 3
  • Pascal Terray
    • 1
  • Sébastien Masson
    • 1
  • Takeshi Izumo
    • 1
  • Tomoki Tozuka
    • 2
  • Toshio Yamagata
    • 2
  2. 2.Department of Earth and Planetary Science, Graduate School of ScienceUniversity of TokyoTokyoJapan
  3. 3.LOCEAN-IPSLUniversité Pierre et Marie CurieParis cedex 05France

Personalised recommendations