Predictability of the mid-latitude Atlantic meridional overturning circulation in a multi-model system

Abstract

Assessing the skill of the Atlantic meridional overturning circulation (AMOC) in decadal hindcasts (i.e. retrospective predictions) is hampered by a lack of observations for verification. Models are therefore needed to reconstruct the historical AMOC variability. Here we show that ten recent oceanic syntheses provide a common signal of AMOC variability at 45°N, with an increase from the 1960s to the mid-1990s and a decrease thereafter although they disagree on the exact magnitude. This signal correlates with observed key processes such as the North Atlantic Oscillation, sub-polar gyre strength, Atlantic sea surface temperature dipole, and Labrador Sea convection that are thought to be related to the AMOC. Furthermore, we find potential predictability of the mid-latitude AMOC for the first 3–6 year means when we validate decadal hindcasts for the past 50 years against the multi-model signal. However, this predictability is not found in models driven only by external radiative changes, demonstrating the need for initialization of decadal climate predictions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Anderson D, Stockdale T, Balmaseda M, Ferranti L, Vitart F, Molteni F, Doblas-Reyes F, Mogenson K, Vidard A (2007) Development of the ECMWF seasonal forecasting system 3. ECMWF technical memorandum 503. www.ecmwf.int. Accessed 19 Oct 2012

  2. Balmaseda MA, Vidard A, Anderson DLT (2008) The ECMWF ocean analysis system ORA-S3. Mon Wea Rev 136:3018–3034. doi:10.1175/2008MWR2433.1

    Article  Google Scholar 

  3. Bellucci A, Masina S, DiPietro P, Navarra A (2007) Using temperature-salinity relations in a global ocean implementation of a multivariate data assimilation scheme. Mon Wea Rev 135:3785–3807. doi:10.1175/2007MWR1821.1

    Article  Google Scholar 

  4. Böning CW, Scheinert M, Dengg J, Biastoch A, Funk A (2006) Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning. Geophys Res Lett 33:L21S01. doi:10.1029/2006GL026906

    Article  Google Scholar 

  5. Bryden HL, Longworth HR, Cunningham SA (2005) Slowing of the Atlantic meridional overturning circulation at 25 N. Nature 438:655–657. doi:10.1038/nature04385

    Article  Google Scholar 

  6. Collins M, Booth BBB, Harris GR, Murphy JM, Sexton DMH, Webb MJ (2006a) Towards quantifying uncertainty in transient climate change. Clim Dyn 27:127–147. doi:10.1007/s00382-006-0121-0

    Article  Google Scholar 

  7. Collins M, Botzet M, Carril AF, Drange H, Jouzeau A, Latif M, Masina S, Otteraa OH, Pohlmann H, Sorteberg A, Sutton R, Terray L (2006b) Interannual to decadal climate predictability in the North Atlantic: a multi-model ensemble study. J Clim 19:1195–1203. doi:10.1175/JCLI3654.1

    Article  Google Scholar 

  8. Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Hinton T, Jones CD, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Totterdell I, Woodward S, Reichler T, Kim J (2008) Evaluation of the HadGEM2 model. Met Office Hadley Centre Technical Note HCTN 74. www.metoffice.gov.uk. Accessed 19 Oct 2012

  9. Collins M, Booth BBB, Bhaskaran B, Harris GR, Murphy JM, Sexton DMH, Webb MJ (2010) Climate model errors, feedbacks and forcings: a comparison of perturbed physics and multi-model ensembles. Clim Dyn 36:1737–1766. doi:10.1007/s00382-010-0808-0

    Article  Google Scholar 

  10. Cunningham SA, Marsh R (2010) Observing and modeling changes in the Atlantic MOC. Wiley Interdiscip Rev Clim Change 1:180–191. doi:10.1002/wcc.22

    Google Scholar 

  11. Cunningham SA, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth HR, Grant EM, Hirschi JJ-M, Beal LM, Meinen CS, Bryden HL (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5N. Science 317:935–938. doi:10.1126/science.1141304

    Article  Google Scholar 

  12. Curry RG, McCartney MS (2001) Ocean gyre circulation changes associated with the North Atlantic Oscillation. J Phys Oceanogr 31:3374–3400. doi:10.1175/1520-0493(1997)125<0809:COAFIT>2.0.CO;2

    Article  Google Scholar 

  13. Curry RG, McCartney MS, Joyce TM (1998) Oceanic transport of subpolar climate signals to mid-depths subtropical waters. Nature 391:575–577. doi:10.1038/35356

    Article  Google Scholar 

  14. Daget N, Weaver AT, Balmaseda MA (2009) Ensemble estimation of background-error variances in a three-dimensional variational data assimilation system for the global ocean. Q J R Meteorol Soc 135:1071–1094. doi:10.1002/qj.412

    Article  Google Scholar 

  15. Dibarboure G, Le Traon PY, Rosmorduc V (2004) Ssalto/Duacs multimission altimeter products. AVISO Newsletter 10:10–11. http://www.aviso.oceanobs.com. Accessed 19 Oct 2012

    Google Scholar 

  16. Doblas-Reyes FJ, Weisheimer A, Déqué M, Keenlyside N, McVean M, Murphy JM, Rogel P, Smith D, Palmer TN (2009) Addressing model uncertainty in seasonal and annual dynamical ensemble forecasts. Q J R Meteorol Soc 135:1538–1559. doi:10.1002/qj.464

    Article  Google Scholar 

  17. Domingues CM, Church JA, White NJ, Gleckler PJ, Wijffels SE, Barker PM, Dunn JR (2008) Improved estimate of upper-ocean warming and multidecadal sea level rise. Nature 453:1090–1093. doi:10.1038/nature07080

    Article  Google Scholar 

  18. Dunstone NJ, Smith DM (2010) Impact of atmosphere and sub-surface ocean data on decadal climate prediction. Geophys Res Lett 37:L02709. doi:10.1029/2009GL041609

    Article  Google Scholar 

  19. Goddard L, Kumar A, Solomon A, Smith D, Boer G, Gonzalez P, Kharin V, Merryfield W, Deser C, Mason SJ, Kirtman BP, Msadek R, Sutton R, Hawkins E, Fricker T, Hegerl G, Ferro CAT, Stephenson DB, Meehl GA, Stockdale T, Burgman R, Greene AM, Kushnir Y, Newman M, Carton J, Fukumori I, Delworth T (2012) A verification framework for interannual-to-decadal predictions experiments. Clim Dyn. doi:10.1007/s00382-012-1481-2

  20. Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168. doi:10.1007/s003820050010

    Article  Google Scholar 

  21. Graham RJ, Gordon M, McLean PJ, Ineson S, Huddleston MR, Davey MK, Brookshaw A, Barnes RTH (2005) A performance comparison of coupled and uncoupled versions of the Met Office seasonal prediction general circulation model. Tellus 57:320–339. doi:10.1111/j.1600-0870.2005.00116.x

    Article  Google Scholar 

  22. Griffies SM, Bryan K (1997) Predictability of North Atlantic multidecadal climate variability. Science 275:181–184. doi:10.1126/science.275.5297.181

    Article  Google Scholar 

  23. Häkkinen S, Rhines PB (2004) Decline of subpolar North Atlantic circulation during the 1990s. Science 304:555–559. doi:10.1126/science.269.5224.676

    Article  Google Scholar 

  24. Hurrell J (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  25. Jungclaus JH, Keenlyside N, Botzet M, Haak H, Luo J–J, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Clim 19:3952–3972. doi:10.1175/JCLI3827.1

    Article  Google Scholar 

  26. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteorol Soc 77:437–471. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

    Article  Google Scholar 

  27. Kanzow T, Send U, McCartney M (2008) On the variability of the deep meridional transports in the tropical North Atlantic. Deep-Sea Res 55:1601–1623. doi:10.1016/j.dsr.2008.07.011

    Article  Google Scholar 

  28. Keenlyside NS, Ba J (2010) Prospects for decadal climate prediction. Wiley Interdiscip Rev Clim Change 1:627–635. doi:10.1002/wcc.69

    Article  Google Scholar 

  29. Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic Sector. Nature 453:84–88. doi:10.1038/nature06921

    Article  Google Scholar 

  30. Kharin VV, Boer GJ, Merryfield WJ, Scinocca JF, Lee W-S (2012) Statistical adjustment of decadal predictions in a changing climate. Geophys Res Lett 39:L19705. doi:10.1029/2012GL052647

    Google Scholar 

  31. Kieke D, Rhein M, Stramma L, Smethie WM, LeBel DA, Zenk W (2006) Changes in the CFC inventories and formation rates of upper Labrador Sea water, 1997–2001. J Phys Oceanogr 36:64–86. doi:10.1175/JPO2814.1

    Article  Google Scholar 

  32. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi:10.1029/2005GL024233

    Article  Google Scholar 

  33. Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic multidecadal oscillation. Geophys Res Lett 33:L17706. doi:10.1029/2006GL026242

    Article  Google Scholar 

  34. Köhl A, Stammer D, Cornuelle B (2007) Interannual to decadal changes in the ECCO global synthesis. J Phys Oceanogr 37:313–337. doi:10.1175/JPO3014.1

    Article  Google Scholar 

  35. Kröger J, Müller WA, von Storch J-S (2012) Impact of different ocean reanalyses on decadal climate prediction. Clim Dyn 39:795–810. doi:10.1007/s00382-012-1310-7

    Article  Google Scholar 

  36. Latif M, Collins M, Pohlmann H, Keenlyside N (2006) A Review of predictability studies of Atlantic sector climate on decadal time scales. J Clim 19:5971–5986. doi:10.1175/JCLI3945.1

    Article  Google Scholar 

  37. Lohmann K, Drange H, Bentsen M (2009) Response of the North Atlantic subpolar gyre to persistent North Atlantic oscillation like forcing. Clim Dyn 32:273–285. doi:10.1007/s00382-008-0467-6

    Article  Google Scholar 

  38. Lozier MS (2012) Overturning in the North Atlantic. Annu Rev Marine Sci 4:291–315. doi:10.1146/annurev-marine-120710-100740

    Article  Google Scholar 

  39. Lozier MS, Roussenov V, Reed MSC, Williams RG (2010) Opposing decadal changes for the North Atlantic meridional overturning circulation. Nat Geosci 3:728–734. doi:10.1038/NGEO947

    Article  Google Scholar 

  40. Lyman JM, Good SA, Gouretski VV, Ishii M, Johnson GC, Palmer MD, Smith DM, Willis JK (2010) Robust warming of the global upper ocean. Nature 465:334–337. doi:10.1038/nature09043

    Article  Google Scholar 

  41. Marshall J, Adcroft A, Hill C, Perelman L, Heisey C (1997) A finite-volume, incompressible Navier–Stokes model for studies of the ocean on parallel computers. J Geophys Res 102:5753–5766. doi:10.1029/96JC02775

    Article  Google Scholar 

  42. Masina S, Di Pietro P, Storto A, Navarra A (2011) Global ocean re-analyses for climate applications. Dyn Atmos Oceans 52:341–366. doi:10.1016/j.dynatmoce.2011.03.006

    Article  Google Scholar 

  43. Matei D, Baehr J, Jungclaus JH, Haak H, Müller WA, Marotzke J (2012a) Multiyear prediction of monthly mean Atlantic meridional overturning circulation at 26.5N. Science 335:76–79. doi:10.1126/science.1210299

    Article  Google Scholar 

  44. Matei D, Pohlmann H, Jungclaus J, Müller W, Haak H, Marotzke J (2012b) Two tales of initializing decadal climate predictions experiments with the ECHAM5/MPI-OM model. J Clim 25:8502–8523. doi:10.1175/JCLI-D-11-00633.1

    Article  Google Scholar 

  45. Matei D, Baehr J, Jungclaus JH, Haak H, Müller WA, Marotzke J (2012c) Response to Comment on ‘multiyear prediction of monthly mean Atlantic meridional overturning circulation at 26.5°N. Science 338:604. doi:10.1126/science.1223200

    Article  Google Scholar 

  46. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York

    Google Scholar 

  47. Munoz E, Kirtman B, Weijer W (2011) Varied representation of the Atlantic Meridional Overturning across multidecadal ocean reanalyses. Deep Sea Res II 58:1848–1857. doi:10.1016/j.dsr2.2010.10.064

    Article  Google Scholar 

  48. Pohlmann H, Botzet M, Latif M, Roesch A, Wild M, Tschuck P (2004) Estimating the long-term predictability potential of a coupled AOGCM. J Clim 17:4463–4472. doi:10.1175/3209.1

    Article  Google Scholar 

  49. Pohlmann H, Jungclaus JH, Köhl A, Stammer D, Marotzke J (2009) Initializing Decadal Climate Predictions with the GECCO Oceanic Synthesis: effects on the North Atlantic. J Clim 22:3926–3938. doi:10.1175/2009JCLI2535.1

    Article  Google Scholar 

  50. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  51. Rayner NA, Brohan P, Parker DE, Folland CK, Kennedy JJ, Vanicek M, Ansell TJ, Tett SFB (2006) Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HadSST2 data set. J Clim 19:446–469. doi:10.1175/JCLI3637.1

    Article  Google Scholar 

  52. Robson J, Sutton R, Lohmann K, Smith D, Palmer MD (2012) Causes of the rapid warming of the North Atlantic ocean in the mid-1990s. J Clim 25:4116–4134. doi:10.1175/JCLI-D-11-00443.1

    Article  Google Scholar 

  53. Send U, Lankhorst M, Kanzow T (2011) Observation of decadal change in the Atlantic meridional overturning circulation using 10 years of continuous transport data. Geophys Res Lett 38:L24606. doi:10.1029/2011GL049801

    Article  Google Scholar 

  54. Smith DM, Murphy JM (2007) An objective ocean temperature and salinity analysis using covariances from a global climate model. J Geophys Res 112:C02022. doi:10.1029/2005JC003172

    Article  Google Scholar 

  55. Smith DM, Cusack S, Colman AW, Folland CK, Harris GR, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317:796–799. doi:10.1126/science.1139540

    Article  Google Scholar 

  56. Smith DM, Eade R, Dunstone NJ, Fereday D, Murphy JM, Pohlmann H, Scaife AA (2010) Skilful multi-year predictions of Atlantic hurricane frequency. Nat Geosci 3:846–849. doi:10.1038/ngeo1004

    Article  Google Scholar 

  57. Srokosz M, Baringer M, Bryden H, Cunningham S, Delworth T, Lozier S, Marotzke J, Sutton R (2012) Past, present and future change in the Atlantic meridional overturning circulation. Bull Amer Meteorol Soc. doi:10.1175/BAMS-D-11-00151.1

  58. Stockdale TN (1997) Coupled ocean–atmosphere forecasts in the presence of climate drift. Mon Weath Rev 125:809–818. doi:10.1175/1520-0493(1997)125<0809:COAFIT>2.0.CO;2

    Article  Google Scholar 

  59. Swingedouw D, Mignot J, Labetoulle S, Guilyardi E, Madec G (2012) Initialisation and predictability of the AMOC over the last 50 years in a climate model. Clim Dyn. doi:10.1007/s00382-012-1516-8

  60. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Amer Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  61. Uppala SM, Kållberg PW, Simmons AJ, Andrae U, Da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally AP, Mahfouf J-F, Morcrette J–J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  62. Vecchi GA, Msadek R, Delworth TL, Dixon KW, Guilyardi E, Hawkins E, Karspeck AR, Mignot J, Robson J, Rosati A, Zhang R (2012) Comment on ‘multiyear prediction of monthly mean Atlantic meridional overturning circulation at 26.5°N’ Science 338:604. doi:101126/science.1222566

  63. Weaver AT, Deltel C, Machu E, Ricci S, Daget N (2005) A multivariate balance operator for variational ocean data assimilation. Q J R Meteorol Soc 131:3605–3625. doi:10.1256/qj.05.119

    Article  Google Scholar 

  64. Weisheimer A, Doblas-Reyes F, Rogel P, Da Costa E, Keenlyside N, Balmaseda M, Murphy J, Smith D, Collins M, Bhaskaran B, Palmer T (2007) Initialisation strategies for decadal hindcasts for the 1960–2005 period within the ENSEMBLES project. ECMWF technical memorandum 521. www.ecmwf.int. Accessed 19 Oct 2012

  65. Weisheimer A, Doblas-Reyes JF, Palmer TN, Alessandri A, Arribas A, Déqué M, Keenlyside N, MacVean M, Navarra A, Rogel P (2009) A new multi-model ensemble for seasonal-to-annual predictions-Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs. Geophys Res Lett 36:L21711. doi:10.1029/2009GL040896

    Article  Google Scholar 

  66. Wilks DS (2011) Statistical methods in the atmospheric sciences, 3rd edn. International geophysics series, Vol 100. Academic Press, Elsevier

  67. Willis JK (2010) Can in situ floats and satellite altimeters detect long-term changes in Atlantic Ocean overturning? Geophys Res Lett 37:L06602. doi:10.1029/2010GL042372

    Article  Google Scholar 

  68. Wunsch C, Heimbach P (2006) Estimated decadal changes in the North Atlantic meridional overturning circulation and heat flux 1993–2004. J Phys Oceanogr 36:2012–2024. doi:10.1175/JPO2957.1

    Article  Google Scholar 

  69. Yeager S, Karspeck A, Danabasoglu G, Tribbia J, Teng H (2012) A decadal prediction case study: late 20th century North Atlantic Ocean heat content. J Clim 25:5173–5189. doi:10.1175/JCLI-D-11-00595.1

    Article  Google Scholar 

  70. Yue S, Pilon P, Cavadias G (2002) Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J Hydrol 259:254–271

    Article  Google Scholar 

  71. Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712. doi:10.1029/2006GL026267

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101), EU-ENSEMBLES, EU-THOR and German Ministry for Education and Research (BMBF)-The North Atlantic as Part of the Earth System: From System Comprehension to Analysis of Regional Impacts projects. We thank two anonymous reviewers for their valuable comments which helped to improved the paper, M. McVean at ECMWF for carrying out the DePreSys PPE experiments, E. da Costa for performing the CERFACS experiments, and S. Cusack for performing the Had simulations. Observational time series of layer thickness for LS water courtesy of D. Kieke, IUP, Universität Bremen, Germany; NAO index of J. Hurrell, NCAR, CO, USA (http://www.cgd.ucar.edu/cas/jhurrell/indices.html), and altimeter products were produced and distributed by Aviso (http://www.aviso.oceanobs.com), as part of the Ssalto ground processing segment. The Atlantic dipole SST index is calculated from HadISST data (Rayner et al. 2003) (http://www.metoffice.gov.uk/hadobs/hadisst/).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Holger Pohlmann.

Appendix

Appendix

Model syntheses and hindcasts

DePreSys

The Met Office Decadal Prediction System (DePreSys) (Smith et al. 2007) is based on the third Hadley Centre climate model (HadCM3) (Gordon et al. 2000), with a resolution of 2.5° × 3.75° in the atmosphere and 1.25° in the ocean. The assimilation experiment is performed by integrating HadCM3 relaxing oceanic temperature and salinity (T, S), and atmospheric horizontal winds (u, v), temperature and surface pressure (p*), to analyses of observations. The atmospheric analyses are taken from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA40 (Uppala et al. 2005) and operational analysis from 2002 onwards). The ocean analyses are created by four-dimensional, multivariate optimal interpolation (Smith and Murphy 2007) of salinity and sub-surface temperature observations and analyzed sea surface temperature (SST) from HadSST2 (Rayner et al. 2006) and HadISST (Rayner et al. 2003), using covariances from HadCM3. The ocean analyses are full-depth, but will be close to climatology in the deeper ocean where data are particularly sparse. The lack of deeper North Atlantic ocean observational data might introduce uncertainties in the AMOC analyses. DePreSys hindcasts consist of 10 ensemble members starting on November 1st every 5 years from 1960 to 2005 inclusive (10 start dates).

DePreSys PPE

DePreSys perturbed physics ensemble (PPE) (Smith et al. 2010) is an updated version of DePreSys that additionally samples modelling uncertainty. This is achieved with a nine-member ensemble of “perturbed physics” HadCM3 model variants, sampling model uncertainties through perturbations of poorly constrained atmospheric and surface variables. These perturbations were applied to a configuration of HadCM3 updated to include a fully interactive representation of the sulphur cycle, and flux adjustments (calculated separately for each model variant) to restrict the development of regional biases in sea surface temperature and salinity (Collins et al. 2006a, 2010). DePreSys PPE hindcasts consist of nine ensemble members (one with each model variant) starting on November 1st in each year from 1960 to 2005 (46 start dates).

Had

Had is an ocean analysis created using the Met Office seasonal forecasting system, GloSea (Graham et al. 2005) but based on HadGEM2 (Collins et al. 2008). The analyses contain 3 ensemble members, obtained by perturbing the atmospheric wind forcing. Hindcasts were not available with this system.

MPI and MPI coarse

The MPI (Pohlmann et al. 2009; Kröger et al. 2012) system uses the European Centre-Hamburg model version 5–Max Planck Institute Ocean Model (ECHAM5–MPI-OM) (Jungclaus et al. 2006) climate model with a resolution of T63 L31 in the atmosphere and 1.5° × 1.5° L40 in the ocean. At low resolution (MPI coarse) the model is run with T31 L19 in the atmosphere and 3° × 3° in the ocean. An assimilation run is performed by relaxing monthly-mean temperature (T) and salinity (S) of the ocean component of the coupled model toward the anomalies from the German contribution to Estimating the Circulation and Climate (GECCO) (Köhl et al. 2007) synthesis. The GECCO framework uses the adjoint to the Massachusetts Institute of Technology (MIT) ocean model (Marshall et al. 1997) to bring the model into consistency with available hydrographic and satellite data, as well as with prior estimates of surface fluxes of momentum, heat, and freshwater. MPI hindcasts consist of one ensemble member starting on January 1st each year from 1952 to 2001 (50 start dates). MPI coarse hindcasts consist of one ensemble member starting each year from 1960 to 2001 (42 start dates).

MPI NCEP

The MPI NCEP (Matei et al. 2012b) system uses the same ocean model as in the MPI coupled system to perform an ensemble of four NCEP forced integrations for the period 1948–2007. In these experiments, the MPI-OM ocean model is forced with daily fluxes of momentum, heat and fresh-water taken from the NCEP-NCAR reanalysis (Kalnay et al. 1996) fields. The daily heat flux is not taken directly from the NCEP-NCAR reanalysis, but computed using a bulk formula. The ensemble mean 3D fields of temperature and salinity anomalies are then nudged into the coupled model to provide initial conditions for the hindcast experiments, which consist of one ensemble member starting January 1st each year from 1949 to 2008 (60 start dates) and an additional two ensemble members starting every 5 years from 1950 to 2005 (12 start dates).

ECMWF

The ECMWF forecast system (Anderson et al. 2007) used the IFS atmosphere model with a horizontal truncation of T95 and 40 vertical levels. The HOPE ocean model has a horizontal resolution of 1°, with an equatorial refinement of 0.3°, and 29 levels in the vertical. The ocean assimilation system for ORA_S3 (Balmaseda et al. 2008) is based on the HOPE optimal interpolation scheme, which allows for assimilation of subsurface temperature and also altimeter derived sea-level anomalies and salinity data. The five simultaneous ocean syntheses are created by adding perturbations, commensurate with the estimated uncertainty, to the wind stress. Atmospheric and land surface initial conditions come from ERA40 (Uppala et al. 2005), or the operational ECMWF analysis for start dates after August 2001. ECMWF hindcasts consist of 3 ensemble members starting on November 1st every 5 years from 1960 to 2005 inclusive (10 start dates).

CERFACS

The CERFACS forecast system (Daget et al. 2009) consists of the ARPEGE4.6 atmosphere and OPA8.2 ocean model. The atmospheric grid is of T63 and the ocean grid is of 2° × 2° L31 resolution. A 3-dimensional variational assimilation scheme (Weaver et al. 2005) is used to produce oceanic synthesis. An ensemble of 9 ocean syntheses is produced by perturbing the wind and SST fields. However, only 3 are used to initialize the hindcasts on November 1st every 5 years from 1960 to 2005 (10 start dates).

CMCC-INGV

The CMCC-INGV system uses the ECHAM5 atmosphere model and the OPA8.2 ocean model. The atmospheric resolution is T63/L19 and that of the ocean 2° × 2° L31. A reduced order optimal interpolation assimilation scheme (Bellucci et al. 2007) is used to produce the ocean syntheses. An ensemble of 3 ocean syntheses is produced by perturbing the wind and SST fields. Hindcasts were not available with this system.

IFM-GEOMAR

The IFM-GEOMAR (Keenlyside et al. 2008) system uses the ECHAM5/MPI-OM (Jungclaus et al. 2006) coupled general circulation model. A resolution of T63 L31 is used in the atmospheric and 1.5° × 1.5° L40 in the oceanic model component. Three coupled integrations using SST-restoration are produced from 1950 to 2005. Hindcasts are started from each of the 3 reanalyses on November 1st every 5 years from 1955 to 2005 inclusive (11 start dates).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pohlmann, H., Smith, D.M., Balmaseda, M.A. et al. Predictability of the mid-latitude Atlantic meridional overturning circulation in a multi-model system. Clim Dyn 41, 775–785 (2013). https://doi.org/10.1007/s00382-013-1663-6

Download citation

Keywords

  • Decadal prediction
  • Atlantic MOC
  • Predictability
  • Multi-model comparison