Skip to main content

Advertisement

Log in

Altered atmospheric responses to eastern Pacific and central Pacific El Niños over the North Atlantic region due to stratospheric interference

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The two types of El Niño that have been identified, namely the eastern Pacific (EP) and central Pacific (CP) El Niños, are known to exert different climatic impacts on the North Atlantic region during winter. Here, we investigate the characteristics of the teleconnection of the two El Niño types with a focus on the stratosphere-troposphere coupling. During the EP El Niño, polar stratospheric warming and polar vortex weakening frequently occur with a strong tendency for downward propagation near the tropopause. Consequently, the atmospheric pattern within the troposphere over the North Atlantic sector during midwinter closely resembles the negative North Atlantic Oscillation pattern. In contrast, during CP El Niño events stratospheric warming events exhibit a much weaker downward propagation tendency. This difference in the stratospheric circulation response arises from the different seasonal evolution of the tropospheric wave response to the two El Niño types. For the EP El Niño, the Aleutian Low begins growing during December and is sustained throughout the entire winter (December to February), which provides favorable conditions for the continuous downward propagation of the stratospheric warming. We also discuss the origin of the difference in the teleconnections from the two types of El Niño associated with the distinct longitudinal position of the warm SST anomaly that determines troposphere-stratosphere coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Nino Modoki and its possible teleconnection. J Geophys Res. doi:10.1029/2006JC003798

    Google Scholar 

  • Baldwin MP, Dunkerton TJ (1999) Propagation of the arctic oscillation from the stratosphere to the troposphere. J Geophys Res 104:30937–930946

    Article  Google Scholar 

  • Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 294:581–584

    Article  Google Scholar 

  • Baldwin MP, O’Sullivan D (1995) Stratospheric effects of ENSO-related tropospheric circulation anomalies. J Clim 8:649–667

    Article  Google Scholar 

  • Barnston AG, Livezey RE, Halpert MS (1991) Modulation of Southern Oscillation-Northern hemisphere mid-winter climate relationship by QBO. J Clim 4:203–217

    Article  Google Scholar 

  • Bell CJ, Gray LJ, Charlton-Perez AJ, Joshi MM, Scaife AA (2009) Stratospheric communication of El Nino teleconnections to European winter. J Clim 22:4083–4096

    Article  Google Scholar 

  • Bladé I, Newman M, Alexander MA, Scott JD (2008) The late fall extratropical response to ENSO: sensitivity to coupling and convection in the Tropical West Pacific. J Clim 21:6101–6118

    Article  Google Scholar 

  • Bronnimann S, Xoplaki E, Casty C, Pauling A, Luterbacher J (2007) ENSO influence on Europe during the last centuries. Clim Dyn 28:181–197

    Article  Google Scholar 

  • Cagnazzo C, Manzini E (2009) Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European Region. J Clim 22:1223–1238

    Article  Google Scholar 

  • Edmon HJ, Hoskins BJ, McIntyre ME (1980) Eliassen-Palm cross-sections for the troposphere. J Atmos Sci 37:2600–2616

    Article  Google Scholar 

  • Fletcher CG, Kushner PJ (2011) The role of linear interference in the annular mode response to tropical SST forcing. J Clim 24:778–794

    Article  Google Scholar 

  • Fraedrich K (1994) An ENSO impact on Europe? A review. Tellus A 46:541–552

    Article  Google Scholar 

  • Garfinkel CI, Hartmann DL (2008) Different ENSO teleconnections and their effects on the stratospheric polar vortex. J Geophys Res. doi:10.1029/2008JD009920

    Google Scholar 

  • Garfinkel CI, Hartmann DL, Sassi F (2010) Tropospheric precursors of anomalous northern hemisphere stratospheric polar vortices. J Clim 23:3282–3299

    Article  Google Scholar 

  • Gouirand I, Moron V (2003) Variability of the impact of El Ninosouthern oscillation on sea-level pressure anomalies over the North Atlantic in January to March (1874–1996). Int J Climatol 23:1549–1566

    Article  Google Scholar 

  • Graf HF, Zanchettin D (2012) Central Pacific El Nino, the “subtropical bridge,” and Eurasian climate. J Geophys Res 117

  • Hamilton K (1988) A detailed examination of the extratropical response to tropical El Niño/Southern Oscillation events. J Climatol 8:67–86

    Article  Google Scholar 

  • Hegyi BM, Deng Y (2011) A dynamical finger print of tropical Pacific sea surface tempreatures on the decadal-scale variability of cool-season Arctic precipitation. J Geophys Res 116

  • Hoerling MP, Kumar A, Zhong M (1997) El Niño, La Niña, and the nonlinearity of their teleconnections. J Clim 10:1769–1786

    Article  Google Scholar 

  • Holton JR (1976) A semi-spectral numerical model for wave-mean flow interactions in the stratosphere: applications to sudden stratospheric warmings. J Atmos Sci 33:1639–1649

    Article  Google Scholar 

  • Horel JD, Wallace JM (1981) Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Monthly Weather Rev 109:813–829

    Article  Google Scholar 

  • Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196

    Article  Google Scholar 

  • Ineson S, Scaife AA (2009) The role of the stratosphere in the European climate response to El Nino. Nat Geosci 2:32–36

    Article  Google Scholar 

  • Jin F, Hoskins BJ (1995) The direct response to tropical heating in a baroclinic atmosphere. J Atmos Sci 52:307–319

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J (1996) The NCEP/NCAR reanalysis project. Bull Am Meteorol Soc 77(3):437–471

    Article  Google Scholar 

  • Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22:615–632

    Article  Google Scholar 

  • Karpetchko A, Nikulin G (2004) Influence of early winter upward wave activity flux on midwinter circulation in the stratosphere and troposphere. J Clim 17:4443–4452

    Article  Google Scholar 

  • Kug JS, Jin FF, An SI (2009) Two types of El Nino events: cold tongue El Nino and warm pool El Nino. J Clim. doi:10.1175/2008JCLI2624.1

    Google Scholar 

  • Kug JS, An SI, Ham YG, Kang IS (2010) Changes in El Nino and La Nina teleconnections over North Pacific-America in the global warming simulations. Theor Appl Climatol. doi:10.1007/s00704-009-0183-0

    Google Scholar 

  • Kunz T, Fraedrich K, Lunkeit F (2009) Impact of synoptic-scale wave breaking on the NAO and its connection with the stratosphere in ERA-40. J Clim. doi:10.1175/2009JCLI2750.1

    Google Scholar 

  • Larkin NK, Harrison D (2005) On the definition of El Niño and associated seasonal average US weather anomalies. Geophys Res Lett 32:L13705

    Article  Google Scholar 

  • Lau NC, Nath MJ (1996) The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J Clim 9:2036–2057

    Article  Google Scholar 

  • Manzini E, Giorgetta MA, Kornbluth L, Roeckner E (2006) The influence of sea surface temperatures on the northern winter stratosphere: ensemble simulations with the MAECHAM5 model. J Clim 19:3863–3881

    Article  Google Scholar 

  • Martius O, Polvani LM, Davies HC (2009) Blocking precursors to stratospheric sudden warming events. Geo Res Lett. doi:10.1029/2009GL038776

    Google Scholar 

  • McIntyre ME (1982) How well do we understand the dynamics of stratospheric warming? J Meteor Soc Jpn 60:37–64

    Google Scholar 

  • Mori M, Watanabe M (2008) The growth and triggering mechanisms of the PNA: a MJO-PNA coherence. J Meteo Soc Jpn 86:213–236

    Article  Google Scholar 

  • Moron V, Gouirand I (2003) Seasonal modulation of the El Nino-southern oscillation relationship with sea level pressure anomalies over the North Atlantic in October-March 1873–1996. Int J Climatol 23:143–155

    Article  Google Scholar 

  • Newman PA, Nash ER (2000) Quantifying the wave driving of the stratosphere. J Geophys Res 105(12485–12412):12497

    Google Scholar 

  • Newman PA, Nash ER, Rosenfield JE (2001) What controls the temperature of the Arctic stratosphere during the spring? J Geophys Res 106(17):19999–20010

    Article  Google Scholar 

  • Perlwitz J, Harnik N (2003) Observational evidence of a stratospheric influence on the troposphere by planetary wave reflection. J Clim 16:3011–3026

    Article  Google Scholar 

  • Perlwitz J, Harnik N (2004) Downward coupling between the stratosphere and troposphere: the relative roles of wave and zonal mean processes*. J Clim 17:4902–4909

    Article  Google Scholar 

  • Polvani LM, Waugh DW (2004) Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J Clim 17:3548–3554

    Article  Google Scholar 

  • Pozo-Vazquez D, Esteban-Parra MJ, Rodrigo FS, Zastro-Diez Y (2001) The association between ENSO and winter atmospheric circulation and temperature in the North Atlantic Region. J Clim 14:3408–3420

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1989) Precipitation patterns associated with the high index phase of the Southern Oscillation. J Clim 2:268–284

    Article  Google Scholar 

  • Sassi F, Kinnison D, Boville B, Garcia R, Roble R (2004) Effect of El Nino-Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere. J Geophys Res 109:D17108

    Article  Google Scholar 

  • Smith TM, Reynolds RW (2003) Extended reconstruction of global sea surface temperatures based on COADS data (1854–1997). J Clim 16:1495–1510

    Article  Google Scholar 

  • Straus DM, Shukla J (2002) Does ENSO force the PNA? J Clim 15:2340–2358

    Article  Google Scholar 

  • Toniazzo T, Scaife AA (2006) The influence of ENSO on winter North Atlantic climate. Geophys Res Lett 33:L24704. doi:10.1029/2006GL027881

    Article  Google Scholar 

  • Wallace JM, Gutzler DS (1981) Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter. Mon Wea Rev 109:784–812

    Article  Google Scholar 

  • Xie F, Li J, Tian W, Feng J, Huo Y (2012) Signals of El Nino Modoki in the tropical tropopause layer and stratosphere. Atmos Chem Phys 12:5259–5273

    Article  Google Scholar 

  • Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF (2009) El Nino in a changing climate. Nature 461:511–514

    Article  Google Scholar 

  • Yu JY, Kim ST (2011) Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J Clim 24:708–720

    Article  Google Scholar 

  • Zhou S, Miller AJ, Wang J, Angell Jk (2002) Downward-propagating temperature anomalies in the preconditioned polar stratosphere. J Clim 15:781–792

    Article  Google Scholar 

  • Zubiaurre I, Calvo N (2012) The El Nino-Southern Oscillation (ENSO) Modoki signal in the stratosphere. J Geophys Res 117

Download references

Acknowledgments

This work was supported by the Polar Academic Program (PAP), Korea Polar Research Institute (KOPRI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Il An.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sung, MK., Kim, BM. & An, SI. Altered atmospheric responses to eastern Pacific and central Pacific El Niños over the North Atlantic region due to stratospheric interference. Clim Dyn 42, 159–170 (2014). https://doi.org/10.1007/s00382-012-1661-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1661-0

Keywords

Navigation