Climate Dynamics

, Volume 41, Issue 1, pp 135–153 | Cite as

Strong interannual variation of the Indian summer monsoon in the Late Miocene

  • Hui Tang
  • Jussi T. Eronen
  • Arne Micheels
  • Bodo Ahrens


The modern Asian monsoon system exhibits strong interannual variation, which has profound environmental and economical impacts. It has been well-documented that the mean Asian monsoon state underwent significant changes in the Late Miocene (11–5 Ma ago). But how the interannual variability of the monsoon climate evolved during this period is still largely unknown. In this study, a long-term simulation of the Late Miocene with a fully coupled atmosphere–ocean general circulation model (ECHAM5/MPI-OM) at T31L19 resolution is used to explore the interannual variation of the Indian summer monsoon (ISM) in the Late Miocene. The regional climate model COSMO–CLM with a higher spatial resolution (~1° × 1°) is further employed to better characterize the spatial patterns of these variations. Our results show that although the mean ISM circulation is weaker in the Late Miocene runs, its interannual variation is as strong as or even stronger than at present and the dominant periods (~2.6–2.7 years) are shorter than at present (~3.4–8.4 years). It is noticed that while the extratropical influence on the ISM variability is weaker-than-present, a persistent El Niño-Southern Oscillation with stronger-than-present interannual variability is observed in our Late Miocene run. This may have maintained a strong interannual variation of the ISM with a shorter period in the Late Miocene. Our findings do not only improve our understanding of the Asian monsoon evolution in the Late Miocene, but also shed light on the future changes in the interannual variability of the ISM.


Interannual variability Indian summer monsoon ENSO Late Miocene AOGCM Regional climate model 



We thank the Ella and Georg Ehrnrooth foundation for project funding. This work was also supported by the Humboldt Foundation (JTE) and the federal state Hessen (Germany) within the LOEWE initiative (AM). This is a contribution to the NECLIME framework. We acknowledge the model support of the CLM community and the technical support from Juha Lento and Tommi Bergman in performing model experiments at the Center for Scientific Computing (CSC) in Espoo (Finland). The valuable comments from Mikael Fortelius and two anonymous reviewers are also highly appreciated.

Supplementary material

382_2012_1655_MOESM1_ESM.pdf (1.8 mb)
Supplementary material 1 (PDF 1876 kb)


  1. Allen M, Jackson J, Walker R (2004) Late Cenozoic reorganization of the Arabia–Eurasia collision and the comparison of short-term and long-term deformation rates. Tectonics 23(2). doi: 10.1029/2003tc001530
  2. An ZS, Kutzbach JE, Prell WL, Porter SC (2001) Evolution of Asian monsoons and phased uplift of the Himalayan Tibetan plateau since Late Miocene times. Nature 411(6833):62–66CrossRefGoogle Scholar
  3. An S-I, Park J-H, Kim B-M, Timmermann A, Jin F-F (2012) Impacts of ocean gateway and basin width on tertiary tropical climate variability in a prototype model. Theor Appl Climatol 107(1):155–164. doi: 10.1007/s00704-011-0469-x CrossRefGoogle Scholar
  4. Ashfaq M, Shi Y, Tung WW, Trapp RJ, Gao XJ, Pal JS, Diffenbaugh NS (2009) Suppression of south Asian summer monsoon precipitation in the 21st century. Geophys Res Lett 36(1). doi: 10.1029/2008gl036500
  5. Barnett TP, Dumenil L, Schlese U, Roeckner E (1988) The effect of Eurasian snow cover on global climate. Science 239(4839):504–507CrossRefGoogle Scholar
  6. Barreiro M, Philander G, Pacanowski R, Fedorov A (2006) Simulations of warm tropical conditions with application to middle Pliocene atmospheres. Clim Dyn 26(4):349–365. doi: 10.1007/s00382-005-0086-4 CrossRefGoogle Scholar
  7. Beerling DJ, Royer DL (2011) Convergent Cenozoic CO2 history. Nat Geosci 4(7):418–420. doi: 10.1038/Ngeo1186 CrossRefGoogle Scholar
  8. Bradshaw CD, Lunt DJ, Flecker R, Salzmann U, Pound MJ, Haywood AM, Eronen JT (2012) The relative roles of CO2 and palaeogeography in determining late Miocene climate: results from a terrestrial model-data comparison. Clim Past 8(4):1257–1285. doi: 10.5194/cp-8-1257-2012 CrossRefGoogle Scholar
  9. Brierley CM, Fedorov AV (2010) Relative importance of meridional and zonal sea surface temperature gradients for the onset of the ice ages and Pliocene–Pleistocene climate evolution. Paleoceanography 25(2):PA2214. doi: 10.1029/2009pa001809 CrossRefGoogle Scholar
  10. Chang CP, Harr P, Ju JH (2001) Possible roles of Atlantic circulations on the weakening Indian monsoon rainfall–ENSO relationship. J Clim 14(11):2376–2380CrossRefGoogle Scholar
  11. Charreau J, Chen Y, Gilder S, Barrier L, Dominguez S, Augier R, Sen S, Avouac JP, Gallaud A, Graveleau F, Wang QC (2009) Neogene uplift of the Tian Shan Mountains observed in the magnetic record of the Jingou River section (northwest China). Tectonics 28. doi: 10.1029/2007tc002137
  12. Clift PD, Hodges KV, Heslop D, Hannigan R, Van Long H, Calves G (2008) Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nat Geosci 1(12):875–880. doi: 10.1038/ngeo351 CrossRefGoogle Scholar
  13. Coleman M, Hodges K (1995) Evidence for Tibetan Plateau uplift before 14 Myr ago from a new minimum age for east–west extension. Nature 374(6517):49–52CrossRefGoogle Scholar
  14. Collins LS, Coates AG, Berggren WA, Aubry MP, Zhang JJ (1996) The late Miocene Panama isthmian strait. Geology 24(8):687–690CrossRefGoogle Scholar
  15. Collins M, An SI, Cai WJ, Ganachaud A, Guilyardi E, Jin FF, Jochum M, Lengaigne M, Power S, Timmermann A, Vecchi G, Wittenberg A (2010) The impact of global warming on the tropical Pacific Ocean and El Nino. Nat Geosci 3(6):391–397CrossRefGoogle Scholar
  16. Cruz RV, Harasawa H, Lal M, Wu S, Anokhin Y, Punsalmaa B, Honda Y, Jafari M, Li C, Huu Ninh N (2007) Asia climate change: impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  17. Dettman DL, Kohn MJ, Quade J, Ryerson FJ, Ojha TP, Hamidullah S (2001) Seasonal stable isotope evidence for a strong Asian monsoon throughout the past 10.7 my. Geology 29(1):31–34CrossRefGoogle Scholar
  18. Ding QH, Wang B (2005) Circumglobal teleconnection in the Northern Hemisphere summer. J Clim 18(17):3483–3505CrossRefGoogle Scholar
  19. Dobler A, Ahrens B (2010) Analysis of the Indian summer monsoon system in the regional climate model COSMO–CLM. J Geophys Res 115:D16101. doi: 10.1029/2009jd013497 CrossRefGoogle Scholar
  20. Dobler A, Ahrens B (2011) Four climate change scenarios for the Indian summer monsoon by the regional climate model COSMO–CLM. J Geophys Res 116:D24104. doi: 10.1029/2011jd016329 CrossRefGoogle Scholar
  21. Dong B, Sutton RT (2007) Enhancement of ENSO variability by a weakened Atlantic thermohaline circulation in a coupled GCM. J Clim 20(19):4920–4939CrossRefGoogle Scholar
  22. Dupont-Nivet G, Krijgsman W, Langereis CG, Abels HA, Dai S, Fang X (2007) Tibetan plateau aridification linked to global cooling at the Eocene–Oligocene transition. Nature 445(7128):635–638. doi: 10.1038/nature05516 CrossRefGoogle Scholar
  23. Eronen JT, Ataabadia MM, Micheelsb A, Karme A, Bernor RL, Fortelius M (2009) Distribution history and climatic controls of the Late Miocene Pikermian chronofauna. Proc Natl Acad Sci USA 106(29):11867–11871. doi: 10.1073/pnas.0902598106 CrossRefGoogle Scholar
  24. Eronen JT, Puolamäki K, Liu L, Lintulaakso K, Damuth J, Janis C, Fortelius M (2010) Precipitation and large herbivorous mammals, part II: application to fossil data. Evol Ecol Res 12:235–248Google Scholar
  25. Eronen JT, Fortelius M, Micheels A, Portmann FT, Puolamäki K, Janis CM (2012) Neogene aridification of the Northern Hemisphere. Geology 40(9):823–826. doi: 10.1130/g33147.1 CrossRefGoogle Scholar
  26. Fasullo J (2004) A stratified diagnosis of the Indian monsoon—Eurasian snow cover relationship. J Clim 17(5):1110–1122. doi: 10.1175/1520-0442(2004)017<1110:asdoti>;2 CrossRefGoogle Scholar
  27. Fedorov AV, Brierley CM, Emanuel K (2010) Tropical cyclones and permanent El Niño in the early Pliocene epoch. Nature 463(7284):1066–1070CrossRefGoogle Scholar
  28. Fu YH, Lu RY (2010) Simulated change in the interannual variability of South Asian summer monsoon in the 21st century. Adv Atmos Sci 27(5):992–1002. doi: 10.1007/s00376-009-9124-1 CrossRefGoogle Scholar
  29. Gadgil S (2003) The Indian monsoon and its variability. Annu Rev Earth Planet Sci 31:429–467. doi: 10.1146/ CrossRefGoogle Scholar
  30. Galeotti S, von der Heydt A, Huber M, Bice D, Dijkstra H, Jilbert T, Lanci L, Reichart GJ (2010) Evidence for active El Nino Southern oscillation variability in the Late Miocene greenhouse climate. Geology 38(5):419–422CrossRefGoogle Scholar
  31. Ge J, Dai Y, Zhang Z, Zhao D, Li Q, Zhang Y, Yi L, Wu H, Oldfield F, Guo Z (2012) Major changes in East Asian climate in the mid-Pliocene: triggered by the uplift of the Tibetan Plateau or global cooling? J Asian Earth Sci. doi: 10.1016/j.jseaes.2012.10.009 Google Scholar
  32. Goldner A, Huber M, Diffenbaugh N, Caballero R (2011) Implications of the permanent El Niño teleconnection “blueprint” for past global and North American hydroclimatology. Clim Past 7(3):723–743. doi: 10.5194/cp-7-723-2011 CrossRefGoogle Scholar
  33. Goswami BN, Krishnamurthy V, Annamalai H (1999) A broad-scale circulation index for the interannual variability of the Indian summer monsoon. Q J R Meteorol Soc 125(554):611–633CrossRefGoogle Scholar
  34. Guilyardi E (2006) El Nino-mean state-seasonal cycle interactions in a multi-model ensemble. Clim Dyn 26(4):329–348. doi: 10.1007/s00382-005-0084-6 CrossRefGoogle Scholar
  35. Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang CZ, Capotondi A, van Oldenborgh GJ, Stockdale T (2009) Understanding El Nino in Ocean–atmosphere general circulation models progress and challenges. Bull Am Meteorol Soc 90(3):325–340. doi: 10.1175/2008bams2387.1 CrossRefGoogle Scholar
  36. Harzhauser M, Piller WE (2007) Benchmark data of a changing sea—palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene. Palaeogeogr Palaeoclimatol Palaeoecol 253(1–2):8–31CrossRefGoogle Scholar
  37. Haywood AM, Valdes PJ, Peck VL (2007) A permanent El Nino-like state during the Pliocene? Paleoceanography 22(1). doi: 10.1029/2006pa001323
  38. Haywood AM, Dowsett HJ, Valdes PJ, Lunt DJ, Francis JE, Sellwood BW (2009) Introduction. Pliocene climate, processes and problems. Philos Trans R Soc A 367(1886):3–17. doi: 10.1098/rsta.2008.0205 CrossRefGoogle Scholar
  39. Herold N, Seton M, Muller RD, You Y, Huber M (2008) Middle Miocene tectonic boundary conditions for use in climate models. Geochem Geophys Geosyst 9:Q10009. doi: 10.1029/2008GC002046 CrossRefGoogle Scholar
  40. Herold N, Huber M, Müller RD (2011) Modeling the Miocene climatic optimum. Part I: land and atmosphere. J Clim 24(24):6353–6372. doi: 10.1175/2011jcli4035.1 CrossRefGoogle Scholar
  41. Hoorn C, Ohja T, Quade J (2000) Palynological evidence for vegetation development and climatic change in the Sub-Himalayan Zone (Neogene, Central Nepal). Palaeogeogr Palaeoclimatol Palaeoecol 163(3–4):133–161CrossRefGoogle Scholar
  42. Huang YS, Clemens SC, Liu WG, Wang Y, Prell WL (2007) Large-scale hydrological change drove the late Miocene C4 plant expansion in the Himalayan foreland and Arabian Peninsula. Geology 35(6):531–534. doi: 10.1130/g23666a.1 CrossRefGoogle Scholar
  43. Huber M, Caballero R (2003) Eocene El Niño: evidence for robust tropical dynamics in the “hothouse”. Science 299(5608):877–881CrossRefGoogle Scholar
  44. Huber M, Goldner A (2012) Eocene monsoons. J Asian Earth Sci 44:3–23. doi: 10.1016/j.jseaes.2011.09.014 CrossRefGoogle Scholar
  45. IPCC (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  46. Ivany LC, Brey T, Huber M, Buick DP, Schöne BR (2011) El Niño in the Eocene greenhouse recorded by fossil bivalves and wood from Antarctica. Geophys Res Lett 38(16):L16709. doi: 10.1029/2011GL048635 CrossRefGoogle Scholar
  47. Jochum M, Fox-Kemper B, Molnar PH, Shields C (2009) Differences in the Indonesian seaway in a coupled climate model and their relevance to Pliocene climate and El Niño. Paleoceanography 24(1):PA1212. doi: 10.1029/2008pa001678 CrossRefGoogle Scholar
  48. Ju JH, Slingo J (1995) The Asian summer monsoon and ENSO. Q J R Meteorol Soc 121(525):1133–1168CrossRefGoogle Scholar
  49. Jungclaus JH, Keenlyside N, Botzet M, Haak H, Luo JJ, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Clim 19(16):3952–3972CrossRefGoogle Scholar
  50. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471CrossRefGoogle Scholar
  51. Kitoh A (2007) ENSO modulation by mountain uplift. Clim Dyn 28(7):781–796. doi: 10.1007/s00382-006-0209-6 CrossRefGoogle Scholar
  52. Knorr G, Butzin M, Micheels A, Lohmann G (2011) A warm Miocene climate at low atmospheric CO2 levels. Geophys Res Lett 38(20):L20701. doi: 10.1029/2011gl048873 CrossRefGoogle Scholar
  53. Krapp M (2012) Middle Miocene climate evolution: the role of large-scale Ocean circulation and ocean gateways. Doctoral thesis, Max–Planck-Institut für Meteorologie, HamburgGoogle Scholar
  54. Kripalani RH, Oh JH, Chaudhari HS (2007a) Response of the East Asian summer monsoon to doubled atmospheric CO2: coupled climate model simulations and projections under IPCC AR4. Theor Appl Climatol 87(1–4):1–28. doi: 10.1007/s00704-006-0238-4 CrossRefGoogle Scholar
  55. Kripalani RH, Oh JH, Kulkarni A, Sabade SS, Chaudhari HS (2007b) South Asian summer monsoon precipitation variability: coupled climate model simulations and projections under IPCC AR4. Theor Appl Climatol 90(3–4):133–159. doi: 10.1007/s00704-006-0282-0 CrossRefGoogle Scholar
  56. Kroon D, Steens T, Troelstra SR (1991) Onset of monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foraminifers. Proc Ocean Drill Program 117:257–263Google Scholar
  57. Kurschner WM, Kvacek Z, Dilcher DL (2008) The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proc Natl Acad Sci USA 105(2):449–453. doi: 10.1073/pnas.0708588105 CrossRefGoogle Scholar
  58. Kutzbach JE, Behling P (2004) Comparison of simulated changes of climate in Asia for two scenarios: early Miocene to present, and present to future enhanced greenhouse. Glob Planet Chang 41(3–4):157–165. doi: 10.1016/j.gloplacha.2004.01.015 CrossRefGoogle Scholar
  59. Lacombe O, Mouthereau F, Kargar S, Meyer B (2006) Late Cenozoic and modern stress fields in the western Fars (Iran): implications for the tectonic and kinematic evolution of central Zagros. Tectonics 25(1):TC1003. doi: 10.1029/2005TC001831 CrossRefGoogle Scholar
  60. Li JP, Wang JL (2003) A new North Atlantic oscillation index and its variability. Adv Atmos Sci 20(5):661–676. doi: 10.1007/bf02915394 CrossRefGoogle Scholar
  61. Liu LP, Eronen JT, Fortelius M (2009) Significant mid-latitude aridity in the middle Miocene of East Asia. Palaeogeogr Palaeoclimatol Palaeoecol 279(3–4):201–206. doi: 10.1016/j.palaeo.2009.05.014 CrossRefGoogle Scholar
  62. Liu-Zeng J, Tapponnier P, Gaudemer Y, Ding L (2008) Quantifying landscape differences across the Tibetan plateau: implications for topographic relief evolution. J Geophys Res 113:F04018. doi: 10.1029/2007jf000897 CrossRefGoogle Scholar
  63. Lu RY, Chen W, Dong BW (2008) How does a weakened Atlantic thermohaline circulation lead to an intensification of the ENSO-south Asian summer monsoon interaction? Geophys Res Lett 35(8). doi: 10.1029/2008gl033394
  64. Lunt DJ, Flecker R, Valdes PJ, Salzmann U, Gladstone R, Haywood AM (2008) A methodology for targeting palaeo proxy data acquisition: a case study for the terrestrial late Miocene. Earth Planet Sci Lett 271(1–4):53–62. doi: 10.1016/j.epsl.2008.03.035 CrossRefGoogle Scholar
  65. Micheels A, Bruch AA, Uhl D, Utescher T, Mosbrugger V (2007) A Late Miocene climate model simulation with ECHAM4/ML and its quantitative validation with terrestrial proxy data. Palaeogeogr Palaeoclimatol Palaeoecol 253:251–270. doi: 10.1016/j.palaeo.2007.03.042 CrossRefGoogle Scholar
  66. Micheels A, Bruch AA, Eronen J, Fortelius M, Harzhauser M, Utescher T, Mosbrugger V (2011) Analysis of heat transport mechanisms from a Late Miocene model experiment with a fully-coupled atmosphere–ocean general circulation model. Palaeogeogr Palaeoclimatol Palaeoecol 304(3–4):337–350CrossRefGoogle Scholar
  67. Molnar P, Cane MA (2002) El Niño’s tropical climate and teleconnections as a blueprint for pre-ice age climates. Paleoceanography 17(2):1021. doi: 10.1029/2001pa000663 CrossRefGoogle Scholar
  68. Molnar P, Boos WR, Battisti DS (2010) Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau. Annu Rev Earth Planet Sci 38:77–102CrossRefGoogle Scholar
  69. Muller WA, Roeckner E (2008) ENSO teleconnections in projections of future climate in ECHAM5/MPI-OM. Clim Dyn 31(5):533–549CrossRefGoogle Scholar
  70. Paeth H, Hense A, Glowienka-Hense R, Voss S, Cubasch U (1999) The North Atlantic oscillation as an indicator for greenhouse-gas induced regional climate change. Clim Dyn 15(12):953–960. doi: 10.1007/s003820050324 CrossRefGoogle Scholar
  71. Paeth H, Scholten A, Friederichs P, Hense A (2008) Uncertainties in climate change prediction: El Niño-Southern oscillation and monsoons. Glob Planet Chang 60(3–4):265–288. doi: 10.1016/j.gloplacha.2007.03.002 CrossRefGoogle Scholar
  72. Pagani M, Freeman KH, Arthur MA (1999) Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science 285(5429):876–879. doi: 10.1126/science.285.5429.876 CrossRefGoogle Scholar
  73. Pagani M, Zachos JC, Freeman KH, Tipple B, Bohaty S (2005) Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309(5734):600–603CrossRefGoogle Scholar
  74. Parthasarathy B, Kumar KK, Kothawale DR (1992) Indian summer monsoon rainfall indices: 1871–1990. Meteorol Mag 121(1441):174–186Google Scholar
  75. Parthasarathy B, Munot AA, Kothawale DR (1994) All-India monthly and seasonal rainfall series—1871–1993. Theor Appl Climatol 49(4):217–224CrossRefGoogle Scholar
  76. Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406(6797):695–699CrossRefGoogle Scholar
  77. Peings Y, Douville H (2010) Influence of the Eurasian snow cover on the Indian summer monsoon variability in observed climatologies and CMIP3 simulations. Clim Dyn 34(5):643–660. doi: 10.1007/s00382-009-0565-0 CrossRefGoogle Scholar
  78. Popov SV, Shcherba IG, Ilyina LB, Nevesskaya LA, Paramonova NP, Khondkarian SO, Magyar I (2006) Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeogr Palaeoclimatol Palaeoecol 238(1–4):91–106. doi: 10.1016/j.palaeo.2006.03.020 CrossRefGoogle Scholar
  79. Pound MJ, Haywood AM, Salzmann U, Riding JB, Lunt DJ, Hunter SJ (2011) A Tortonian (Late Miocene, 11.61–7.25 Ma) global vegetation reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 300(1–4):29–45. doi: 10.1016/j.palaeo.2010.11.029 CrossRefGoogle Scholar
  80. Pound MJ, Haywood AM, Salzmann U, Riding JB (2012) Global vegetation dynamics and latitudinal temperature gradients during the Mid to Late Miocene (15.97–5.33 Ma). Earth Sci Rev 112(1–2):1–22. doi: 10.1016/j.earscirev.2012.02.005 CrossRefGoogle Scholar
  81. Prell WL, Kutzbach JE (1992) Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature 360(6405):647–652CrossRefGoogle Scholar
  82. Quade J, Cerling TE, Bowman JR (1989) Development of Asian monsoon revealed by marked ecological shift during the Latest Miocene in Northern Pakistan. Nature 342(6246):163–166CrossRefGoogle Scholar
  83. Robock A, Mu M, Vinnikov K, Robinson D (2003) Land surface conditions over Eurasia and Indian summer monsoon rainfall. J Geophys Res 108(D4):4131. doi: 10.1029/2002jd002286 CrossRefGoogle Scholar
  84. Rockel B, Geyer B (2008) The performance of the regional climate model CLM in different climate regions, based on the example of precipitation. Meteorol Z 17(4):487–498. doi: 10.1127/0941-2948/2008/0297 CrossRefGoogle Scholar
  85. Rowley DB, Currie BS (2006) Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature 439(7077):677–681CrossRefGoogle Scholar
  86. Rowley DB, Pierrehumbert RT, Currie BS (2001) A new approach to stable isotope-based paleoaltimetry: implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene. Earth Planet Sci Lett 188(1–2):253–268CrossRefGoogle Scholar
  87. Saeed S, Müller W, Hagemann S, Jacob D (2011) Circumglobal wave train and the summer monsoon over northwestern India and Pakistan: the explicit role of the surface heat low. Clim Dyn 37(5–6):1045–1060. doi: 10.1007/s00382-010-0888-x CrossRefGoogle Scholar
  88. Sanyal P, Sarkar A, Bhattacharya SK, Kumar R, Ghosh SK, Agrawal S (2010) Intensification of monsoon, microclimate and asynchronous C4 appearance: isotopic evidence from the Indian Siwalik sediments. Palaeogeogr Palaeoclimatol Palaeoecol 296(1–2):165–173CrossRefGoogle Scholar
  89. Schneck R, Micheels A, Mosbrugger V (2012) Climate impact of high northern vegetation: Late Miocene and present. Int J Earth Sci 101(1):323–338. doi: 10.1007/s00531-011-0652-4 CrossRefGoogle Scholar
  90. Scroxton N, Bonham SG, Rickaby REM, Lawrence SHF, Hermoso M, Haywood AM (2011) Persistent El Niño-Southern oscillation variation during the Pliocene Epoch. Paleoceanography 26(2):PA2215. doi: 10.1029/2010PA002097 CrossRefGoogle Scholar
  91. Shukla SP, Chandler MA, Jonas J, Sohl LE, Mankoff K, Dowsett H (2009) Impact of a permanent El Niño (El Padre) and Indian Ocean dipole in warm Pliocene climates. Paleoceanography 24(2):PA2221. doi: 10.1029/2008pa001682 CrossRefGoogle Scholar
  92. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21(10):2283–2296. doi: 10.1175/2007jcli2100.1 CrossRefGoogle Scholar
  93. Spicer RA, Harris NBW, Widdowson M, Herman AB, Guo SX, Valdes PJ, Wolfe JA, Kelley SP (2003) Constant elevation of southern Tibet over the past 15 million years. Nature 421(6923):622–624CrossRefGoogle Scholar
  94. Steppuhn A, Micheels A, Bruch AA, Uhl D, Utescher T, Mosbrugger V (2007) The sensitivity of ECHAM4/ML to a double CO2 scenario for the Late Miocene and the comparison to terrestrial proxy data. Glob Planet Chang 57(3–4):189–212. doi: 10.1016/j.gloplacha.2006.09.003 CrossRefGoogle Scholar
  95. Sun XJ, Wang PX (2005) How old is the Asian monsoon system? Palaeobotanical records from China. Palaeogeogr Palaeoclimatol Palaeoecol 222(3–4):181–222CrossRefGoogle Scholar
  96. Sun JM, Ye J, Wu WY, Ni XJ, Bi SD, Zhang ZQ, Liu WM, Meng J (2010) Late Oligocene–Miocene mid-latitude aridification and wind patterns in the Asian interior. Geology 38(6):515–518CrossRefGoogle Scholar
  97. Syed F, Yoo J, Körnich H, Kucharski F (2012) Extratropical influences on the inter-annual variability of South-Asian monsoon. Clim Dyn 38(7):1661–1674. doi: 10.1007/s00382-011-1059-4 CrossRefGoogle Scholar
  98. Tang H, Micheels A, Eronen J, Fortelius M (2011) Regional climate model experiments to investigate the Asian monsoon in the Late Miocene. Clim Past 7(3):847–868CrossRefGoogle Scholar
  99. Tang H, Micheels A, Eronen J, Ahrens B, Fortelius M (2012) Asynchronous responses of East Asian and Indian summer monsoons to mountain uplift shown by regional climate modelling experiments. Clim Dyn 1–19. doi: 10.1007/s00382-012-1603-x
  100. Tong JA, You Y, Müller RD, Seton M (2009) Climate model sensitivity to atmospheric CO2 concentrations for the middle Miocene. Glob Planet Chang 67(3–4):129–140. doi: 10.1016/j.gloplacha.2009.02.001 CrossRefGoogle Scholar
  101. Turner AG, Slingo JM (2011) Using idealized snow forcing to test teleconnections with the Indian summer monsoon in the Hadley Centre GCM. Clim Dyn 36(9–10):1717–1735. doi: 10.1007/s00382-010-0805-3 CrossRefGoogle Scholar
  102. Utescher T, Bruch AA, Micheels A, Mosbrugger V, Popova S (2011) Cenozoic climate gradients in Eurasia—a palaeo-perspective on future climate change? Palaeogeogr Palaeoclimatol Palaeoecol 304(3–4):351–358. doi: 10.1016/j.palaeo.2010.09.031 CrossRefGoogle Scholar
  103. Vernekar AD, Zhou J, Shukla J (1995) The effect of Eurasian snow cover on the Indian monsoon. J Clim 8(2):248–266CrossRefGoogle Scholar
  104. Vizcaíno M, Rupper S, Chiang JCH (2010) Permanent El Niño and the onset of Northern Hemisphere glaciations: mechanism and comparison with other hypotheses. Paleoceanography 25(2):PA2205. doi: 10.1029/2009pa001733 CrossRefGoogle Scholar
  105. von der Heydt A, Dijkstra H (2011) The impact of ocean gateways on ENSO variability in the Miocene. Geol Soc Lond Spec Publ 355:305–318. doi: 10.1144/SP355.15 CrossRefGoogle Scholar
  106. Wang B, Wu RG, Lau KM (2001) Interannual variability of the Asian summer monsoon: contrasts between the Indian and the western North Pacific–east Asian monsoons. J Clim 14(20):4073–4090CrossRefGoogle Scholar
  107. Wang PX, Clemens S, Beaufort L, Braconnot P, Ganssen G, Jian ZM, Kershaw P, Sarnthein M (2005) Evolution and variability of the Asian monsoon system: state of the art and outstanding issues. Quat Sci Rev 24(5–6):595–629CrossRefGoogle Scholar
  108. Wang Y, Wang XM, Xu YF, Zhang CF, Li Q, Tseng ZJ, Takeuchi G, Deng T (2008) Stable isotopes in fossil mammals, fish and shells from Kunlun Pass Basin, Tibetan Plateau: paleo-climatic and paleo-elevation implications. Earth Planet Sci Lett 270(1–2):73–85. doi: 10.1016/j.epsl.2008.03.006 CrossRefGoogle Scholar
  109. Wara MW, Ravelo AC, Delaney ML (2005) Permanent El Nino-like conditions during the Pliocene warm period. Science 309(5735):758–761. doi: 10.1126/science.1112596 CrossRefGoogle Scholar
  110. Watanabe T, Suzuki A, Minobe S, Kawashima T, Kameo K, Minoshima K, Aguilar YM, Wani R, Kawahata H, Sowa K, Nagai T, Kase T (2011) Permanent El Nino during the Pliocene warm period not supported by coral evidence. Nature 471(7337):209–211. doi: 10.1038/Nature09777 CrossRefGoogle Scholar
  111. Webster PJ, Magana VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res 103(C7):14451–14510CrossRefGoogle Scholar
  112. Wu AM, Ni YQ (1997) The influence of Tibetan plateau on the interannual variability of Asian monsoon. Adv Atmos Sci 14(4):491–504. doi: 10.1007/s00376-997-0067-0 CrossRefGoogle Scholar
  113. Yang S, Lau KM (2006) Interannual variability of the Asian monsoon. In: Wang B (ed) The Asian monsoon. Springer, Berlin, pp 259–293CrossRefGoogle Scholar
  114. Ye HC, Bao ZH (2001) Lagged teleconnections between snow depth in northern Eurasia, rainfall in Southeast Asia and sea-surface temperatures over the tropical Pacific Ocean. Int J Climatol 21(13):1607–1621CrossRefGoogle Scholar
  115. Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF (2009) El Nino in a changing climate. Nature 461(7263):511–514. doi: 10.1038/Nature08316 CrossRefGoogle Scholar
  116. Yin A (2010) Cenozoic tectonic evolution of Asia: a preliminary synthesis. Tectonophysics 488(1–4):293–325CrossRefGoogle Scholar
  117. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292(5517):686–693CrossRefGoogle Scholar
  118. Zhang Z, Flatøy F, Wang H, Bethke I, Bentsen M, Guo Z (2012) Early Eocene Asian climate dominated by desert and steppe with limited monsoons. J Asian Earth Sci 44:24–35. doi: 10.1016/j.jseaes.2011.05.013 CrossRefGoogle Scholar
  119. Zheng HB, Powell CM, An ZS, Zhou J, Dong GR (2000) Pliocene uplift of the northern Tibetan Plateau. Geology 28(8):715–718CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hui Tang
    • 1
  • Jussi T. Eronen
    • 1
    • 2
  • Arne Micheels
    • 2
    • 3
  • Bodo Ahrens
    • 4
  1. 1.Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland
  2. 2.Biodiversity and Climate Research Centre (LOEWE BiK-F)Frankfurt am MainGermany
  3. 3.Senckenberg Research Institute and Nature MuseumFrankfurt am MainGermany
  4. 4.Institute for Atmospheric and Environmental SciencesGoethe UniversityFrankfurt am MainGermany

Personalised recommendations