Climate Dynamics

, Volume 41, Issue 3–4, pp 1025–1038 | Cite as

A retrospective analysis of pan Arctic permafrost using the JULES land surface model

  • Eleanor J. BurkeEmail author
  • Rutger Dankers
  • Chris D. Jones
  • Andrew J. Wiltshire


There is mounting evidence that permafrost degradation has occurred over the past century. However, the amount of permafrost lost is uncertain because permafrost is not readily observable over long time periods and large scales. This paper uses JULES, the land surface component of the Hadley Centre global climate model, driven by different realisations of twentieth century meteorology to estimate the pan-arctic changes in near-surface permafrost. Model simulations of permafrost are strongly dependent on the amount of snow both in the driving meteorology and the way it is treated once it reaches the ground. The multi-layer snow scheme recently adopted by JULES significantly improves its estimates of soil temperatures and permafrost extent. Therefore JULES, despite still having a small cold bias in soil temperatures, can now simulate a near-surface permafrost extent which is comparable to that observed. Changes in snow cover have been shown to contribute to changes in permafrost and JULES simulates a significant decrease in late twentieth century pan-Arctic spring snow cover extent. In addition, large-scale modelled changes in the active layer are comparable with those observed over northern Russia. Simulations over the period 1967–2000 show a significant loss of near-surface permafrost—between 0.55 and 0.81 million km2 per decade with this spread caused by differences in the driving meteorology. These runs also show that, for the grid cells where the active layer has increased significantly, the mean increase is ~10 cm per decade. The permafrost degradation discussed here is mainly caused by an increase in the active layer thickness driven by changes in the large scale atmospheric forcing. However, other processes such as thermokarst development and river and coastal erosion may also occur enhancing permafrost loss.


Permafrost extent Pan-Arctic Permafrost degradation Land surface model 



The work described in this paper was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101), the European Union 6th Framework Programme Integrated Project Water and Global Change (WATCH) (Contract 036946), the European Union 7th Framework Programme COMBINE project (Contract 226520) and the European Union 7th Framework Programme PAGE21 project.


  1. Best MJ, Pryor M, Clark DB, Rooney GG, Essery RLH, Ménard CB, Edwards JM, Hendry MA, Porson A, Gedney N, Mercado LM, Sitch S, Blyth EM, Boucher O, Cox PM, Grimmond CSB, Harding RJ (2011) The Joint UK Land Environment Simulator (JULES), model description—Part 1: energy and water fluxes. Geosci Model Dev 4:677–699. doi: 10.5194/gmd-4-677-2011 CrossRefGoogle Scholar
  2. Blyth E, Gash J, Lloyd A, Pryor M, Weedon GP, Shuttleworth WJ (2010) Evaluating the JULES land surface model energy fluxes using FLUXNET data. J Hydrometeor 11:509–519. doi: 10.1175/2009JHM1183.1 CrossRefGoogle Scholar
  3. Brown RD, Robinson DA (2011) Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. The Cryosphere 5:219–229. doi: 10.5194/tc-5-219-2011 CrossRefGoogle Scholar
  4. Brown J, Ferrians OJ Jr, Heginbottom JA, Melnikov ES (1998) Revised February 2001, circum-arctic map of permafrost and ground-ice conditions. National Snow and Ice Data Center/World Data Center for Glaciology, Digital Media, Boulder, COGoogle Scholar
  5. Brown J, Nelson FE, Hinkel KM (2000) The circumpolar active layer monitoring (CALM) program: research designs and initial results. Polar Geogr 3:165–258Google Scholar
  6. Brown R, Derksen C, Wang L (2010) A multi-data set analysis of variability and change in Arctic spring snow cover extent, 1967–2008. J Geophys Res 115:D16111. doi: 10.1029/2010JD013975 CrossRefGoogle Scholar
  7. Burke EJ, Hartley IP, Jones CD (2012) Uncertainties in the global temperature change caused by carbon release from permafrost thawing. Cryosphere Discuss 6:1367–1404. doi: 10.5194/tcd-6-1367-2012 CrossRefGoogle Scholar
  8. Callaghan TV, Bergholm F, Christensen TR, Jonasson C, Kokfelt U, Johansson M (2010) A new climate era in the sub-Arctic: accelerating climate changes and multiple impacts. Geophys Res Lett 37:L14705. doi: 10.1029/2009GL042064 CrossRefGoogle Scholar
  9. Clark DB, Mercado LM, Sitch S, Jones CD, Gedney N, Best MJ, Pryor M, Rooney GG, Essery RLH, Blyth E, Boucher O, Harding RJ, Cox PM (2011) The Joint UK Land Environment Simulator (JULES), model description—Part 2: carbon fluxes and vegetation. Geosci Model Dev 4:701–722. doi: 10.5194/gmd-4-701-2011 CrossRefGoogle Scholar
  10. Cosby BJ, Hornberger GM, Clapp RB, Ginn TR (1984) A Statistical Exploration of the Relationships of Soil Moisture Characteristics to the Physical Properties of Soils. Water Resour Res 20(6):682–690. doi: 10.1029/WR020i006p00682
  11. Cox PM, Betts RA, Bunton CB, Essery RLH, Rowntree PR, Smith J (1999) The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim Dynam 15:183–203CrossRefGoogle Scholar
  12. Dankers R, Burke EJ, Price J (2011) Simulation of permafrost and seasonal thaw depth in the JULES land surface scheme. The Cryosphere 5:773–790. doi: 10.5194/tc-5-773-2011 CrossRefGoogle Scholar
  13. Dharssi I, Vidale P, Verhoef A, Macpherson B, Jones C, Best M (2009) New soil physical properties implemented in the Unified Model at PS18. Meteorology Research and Development technical report 528, Met. Office., UK. Accessed 18 July 2011
  14. Etzelmüller B, Schuler TV, Isaksen K, Christiansen HH, Farbrot H, Benestad R (2011) Modelling the temperature evolution of Svalbard permafrost during the 20th and 21st century. The Cryosphere 5:67–79. doi: 10.5194/tc-5-67-2011 CrossRefGoogle Scholar
  15. Forbes BC, Fauria MM, Zetterberg P (2010) Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows. Glob Change Biol 16:1542–1554. doi: 10.1111/j.1365-2486.2009.02047.x CrossRefGoogle Scholar
  16. Frauenfeld OW, Zhang T, Barry RG, Gilichinsky D (2004) Interdecadal changes in seasonal freeze and thaw depths in Russia. J Geophys Res 109:D05101. doi: 10.1029/2003JD004245 CrossRefGoogle Scholar
  17. Gilichinsky D, Barry R, Bykhovets S, Sorokovikov V, Zhang T, Zudin S, Fedorov-Davydov D (1998) A century of temperature observations of soil climate: methods of analysis and long-term trends. In: Proceedings of the 7th international conference on permafrost, pp 23–27Google Scholar
  18. Haddeland I, Clark DB, Franssen W, Ludwig F, Voß F, Arnell NW, Bertrand N, Best M, Folwell S, Gerten D, Gomes S, Gosling SN, Hagemann S, Hanasaki N, Harding R, Heinke J, Kabat P, Koirala S, Oki T, Polcher J, Stacke T, Viterbo P, Weedon GP, Yeh P (2011) Multimodel estimate of the global terrestrial water balance: setup and first results. J Hydrometeor 12:869–884. doi: 10.1175/2011JHM1324.1 CrossRefGoogle Scholar
  19. Hinzman LD et al (2005) Evidence and implications of recent climate change in Northern Alaska and other Arctic regions. Clim Change 72:251–298. doi: 10.1007/s10584-005-5352-2 CrossRefGoogle Scholar
  20. Isaksen K, Sollid JL, Holmlund P, Harris C (2007) Recent warming of mountain permafrost in Svalbard and Scandinavia. J Geophys Res-Earth 112(F2):F02S04. doi: 10.1029/2006JF000522 CrossRefGoogle Scholar
  21. Jorgenson MT, Racine CH, Walters JC, Osterkamp TE (2001) Permafrost degradation and ecological changes associated with a warming climate in central Alaska. Clim Change 48:551–579CrossRefGoogle Scholar
  22. Koven CD, Ringeval B, Friedlingstein P, Ciais P, Cadule P, Khvorostyanov D, Krinner G, Tarnocai C (2011) Permafrost carbon-climate feedbacks accelerate global warming. PNAS 108:14769–14774. doi: 10.1073/pnas.1103910108 CrossRefGoogle Scholar
  23. Lawrence DM, Slater AG (2010) The contribution of snow condition trends to future ground climate. Clim Dyn 34:969–981. doi: 10.1007/s00382-009-0537-4 CrossRefGoogle Scholar
  24. Lawrence DM, Slater AG, Romanovsky VE, Nicolsky DJ (2008) Sensitivity of a model projection of near-surface permafrost degradation to soil column depth and representation of soil organic matter. J Geophys Res 113:F02011. doi: 10.1029/2007JF000883 CrossRefGoogle Scholar
  25. Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas RH, Zhang T (2007) Observations: changes in snow, ice and frozen ground. In: Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NYGoogle Scholar
  26. Mitchell TD, Jones PD (2005) An improved method of constructing a database of 736 monthly climate observations and associated high-resolution grids. Int J Clim 25(737):693–712CrossRefGoogle Scholar
  27. Nelson FE (ed) (2004) Circumpolar active layer monitoring (CALM) Workshop. Permaf Periglac Process 15(2):99–188Google Scholar
  28. Nelson FE, Anisimov OA, Shiklomanov NI (2001) Subsidence risk from thawing permafrost. Nature 410:889–890CrossRefGoogle Scholar
  29. Niu G-Y, Yang Z-L (2007) An observation-based formulation of snow cover fraction and its evaluation over large North American river basins J Geophys Res 112:D21101. doi: 10.1029/2007JD008674
  30. O’Connor FM, Boucher O, Gedney N, Jones CD, Folberth GA, Coppell R, Friedlingstein P, Collins WJ, Chappellaz J, Ridley J, Johnson CE (2010) Possible role of wetlands, permafrost and methane hydrates in the methane cycle under future climate change: a review. Rev Geophys 48:RG4005CrossRefGoogle Scholar
  31. Oelke C, Zhang T, Serreze M (2004) Modeling evidence for recent warming of the Arctic soil thermal regime. Geophys Res Lett 31:L07208. doi: 10.1029/2003GL019300 CrossRefGoogle Scholar
  32. Osterkamp TE (2007) Characteristics of the recent warming of permafrost in Alaska. J Geophys Res 112:F02S02. doi: 10.1029/2006JF000578 CrossRefGoogle Scholar
  33. Qian B, Gregorich EG, Gameda S, Hopkins DW, Wang XL (2011) Observed soil temperature trends associated with climate change in Canada. J Geophys Res 116:D02106. doi: 10.1029/2010JD015012 CrossRefGoogle Scholar
  34. Richter-Menge J, Jeffries MO, Overland JE (eds) (2011) Arctic report card 2011.
  35. Riseborough D, Shiklomanov N, Etzelmüller B, Gruber S, Marchenko S (2008) Recent advances in permafrost modelling. Permafr Periglac 19:137–156. doi: 10.1002/ppp.615 CrossRefGoogle Scholar
  36. Robinson DA, Dewey KF, Heim R Jr (1993) Global snow cover monitoring: an update. Bull Am Meteorol Soc 74:1689–1696CrossRefGoogle Scholar
  37. Roesch A, Wild M, Gilgen H, Ohmura A (2001) A new snow cover fraction parameterization for the ECHAM4 GCM. Clim Dyn 17(12):933–946CrossRefGoogle Scholar
  38. Rutter N, Essery R, Pomeroy J, Altimir N, Andreadis K, Baker I, Barr A, Bartlett P, Boone A, Deng H, Douville H, Dutra E, Elder K, Ellis C, Feng X, Gelfan A, Goodbody A, Gusev Y, Gustafsson D, Hellström R, Hirabayashi Y, Hirota T, Jonas T, Koren V, Kuragina A, Lettenmaier D, Li W-P, Luce C, Martin E, Nasonova O, Pumpanen J, Pyles RD, Samuelsson P, Sandells M, Schädler G, Shmakin A, Smirnova TG, Stähli M, Stöckli R, Strasser U, Su H, Suzuki K, Takata K, Tanaka K, Thompson E, Vesala T, Viterbo P, Wiltshire A, Xia K, Xue Y, Yamazaki T (2009) Evaluation of forest snow processes models (SnowMIP2). J Geophys Res 114:D06111. doi: 10.1029/2008JD011063 CrossRefGoogle Scholar
  39. Schaefer K, Zhang T, Bruhwiler L, Bareett AP (2011) Amount and timing of permafrost carbon release in response to climate warming. Tellus B 63:165–180. doi: 10.1111/j.1600-0889.2011.00527.x CrossRefGoogle Scholar
  40. Schuur EAG, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, Hagemann S, Kuhry P, Lafleur PM, Lee H, Mazhitova G, Nelson FE, Rinke A, Romanovsky VE, Shiklomanov N, Tarnocai C, Venevsky S, Vogel JG, Zimov SA (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58:701–714. doi: 10.1641/B580807 CrossRefGoogle Scholar
  41. Sheffield J, Goteti G, Wood EF (2006) Development of a high-resolution global dataset of meteorological forcings for land surface modelling. J Clim 19:3088–3111CrossRefGoogle Scholar
  42. Shiklomanov NI, Streletskiy DA, Nelson FE, Hollister RD, Romanovsky VE, Tweedie CE, Bockheim JG, Brown J (2010) Decadal variations of active-layer thickness in moisture-controlled landscapes, Barrow, Alaska. J Geophys Res 115:G00I04. doi: 10.1029/2009JG001248 CrossRefGoogle Scholar
  43. Smith SL, Romanovsky VE, Lewkowicz AG, Burn CR, Allard M, Clow GD, Yoshikawa K, Throop J (2010) Thermal state of permafrost in North America: a contribution to the international polar year. Permafr Periglac Process 21:117–135. doi: 10.1002/ppp.690 CrossRefGoogle Scholar
  44. Stendel M, Christensen JH (2002) Impact of global warming on permafrost conditions in a coupled GCM. Geophys Res Lett 29:1632CrossRefGoogle Scholar
  45. Takala M, Luojus K, Pulliainen J, Derksen C, Lemmetyinen J, Karna J-P, Koskinen J, Bojkov B (2011) Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sens Environ 115:3517–3529CrossRefGoogle Scholar
  46. Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS III (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443:71–75CrossRefGoogle Scholar
  47. Weedon GP et al (2011) Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J Hydrometeor 12:823–848. doi: 10.1175/2011JHM1369.1 CrossRefGoogle Scholar
  48. Wilson MF, Henderson-Sellers A (1985) A global archive of land cover and soils data for use in general circulation climate models. J Climatol 5:119–143CrossRefGoogle Scholar
  49. Wiltshire AJ (2006) Modelling the surface energetics of patchy Arctic tundra snowcover. PhD thesis, University of DurhamGoogle Scholar
  50. Wu Q, Zhang T (2010) Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007. J Geophys Res 115:D09107. doi: 10.1029/2009JD012974 CrossRefGoogle Scholar
  51. Yang D (1999) An improved precipitation climatology for the Arctic Ocean. Geophys Res Lett 26:1625–1628Google Scholar
  52. Zhang T (2005) Influence of the seasonal snow cover on the ground thermal regime: an overview. Rev Geophys 43:RG4002. doi: 10.1029/2004RG000157 CrossRefGoogle Scholar
  53. Zhang T, Barry RG, Knowles K, Heginbottom JA, Brown J (1999) Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geogr 23(2):132–154CrossRefGoogle Scholar
  54. Zhang T, Barry RG, Knowles K, Ling F, Armstrong RL (2003) Distribution of seasonally and perennially frozen ground in the Northern Hemisphere. In: Phillips M, Springman SM, Arenson LU (eds) Permafrost. Swets & Zeitlinger, Lisse, pp 1289–1294Google Scholar
  55. Zhang Y, Chen W, Riseborough DW (2006) Temporal and spatial changes of permafrost in Canada since the end of the Little Ice Age. J Geophys Res 111:D22103. doi: 10.1029/2006JD007284 CrossRefGoogle Scholar

Copyright information

© Crown Copyright 2013

Authors and Affiliations

  • Eleanor J. Burke
    • 1
    Email author
  • Rutger Dankers
    • 1
  • Chris D. Jones
    • 1
  • Andrew J. Wiltshire
    • 1
  1. 1.Met Office Hadley CentreExeterUK

Personalised recommendations