Skip to main content

Advertisement

Log in

Projected changes in tropical cyclone climatology and landfall in the Southwest Indian Ocean region under enhanced anthropogenic forcing

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The conformal-cubic atmospheric model, a variable-resolution global model, is applied at high spatial resolution to perform simulations of present-day and future climate over southern Africa and over the Southwest Indian Ocean. The model is forced with the bias-corrected sea-surface temperatures and sea-ice of six coupled global climate models that contributed to Assessment Report 4 of the Intergovernmental Panel on Climate Change. All six simulations are for the period 1961–2100, under the A2 emission scenario. Projections for the latter part of the 21st century indicate a decrease in the occurrence of tropical cyclones over the Southwest Indian Ocean adjacent to southern Africa, as well as a northward shift in the preferred landfall position of these systems over the southern African subcontinent. A concurrent increase in January to March rainfall is projected for northern Mozambique and southern Tanzania, with decreases projected further south over semi-arid areas such as the Limpopo River Basin where these systems make an important contribution as main cause of widespread heavy rainfall. It is shown that the projected changes in tropical cyclone attributes and regional rainfall occur in relation to changes in larger scale atmospheric temperature, pressure and wind profiles of the southern African region and adjacent oceans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Bell GD, Chelliah M (2006) Leading tropical modes associated with interannual and multidecadal fluctuations in North Atlantic hurricane activity. J Clim 19:590–612

    Article  Google Scholar 

  • Bengtsson L, Hodges KI (2006) Storm tracks and climate change. J Clim 19:3518–3543

    Article  Google Scholar 

  • Bengtsson L, Botzet M, Esch M (1995) Hurricane-type vortices in a general circulation model. Tellus 47A:175–196

    Google Scholar 

  • Bengtsson L, Hodges KI, Esch M (2007a) Tropical cyclones in a T159 resolution global climate model: comparison with observations and re-analyses. Tellus 59A:396–416

    Google Scholar 

  • Bengtsson L, Hodges KI, Esch M, Keenlyside N, Kornbleuh L, Luo J–J, Yamagata T (2007b) How may tropical cyclones change in a warmer climate? Tellus 59A:539–561. doi:10.1111/j.1600-0870.2007.00251.x

    Google Scholar 

  • Blender R, Schubert M (2000) Cyclone Tracking in Different Spatial and Temporal Resolutions. Mon Weather Rev 128:377–384

    Article  Google Scholar 

  • Camargo SJ, Zebiak SE (2002) Improving the Detection and Tracking of Tropical Cyclones in Atmospheric General Circulation Models. Weather Forecast 17:1152–1162

    Article  Google Scholar 

  • Camargo SJ, Barnston AG, Zebiak SE (2005) A statistical assessment of tropical cyclone activity in atmospheric general circulation models. Tellus 57A:589–604

    Google Scholar 

  • Camargo SJ, Sobel AH, Barnston AG, Emanuel KA (2007a) Tropical cyclone genesis potential index in climate models. Tellus. doi:10.111/j.1600_0870.2007.00238.x

    Google Scholar 

  • Camargo SJ, Emanuel KA, Sobel AH (2007b) Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J Clim 20(19):4819–4834. doi:10.1175/JCLI4282.1

    Article  Google Scholar 

  • Caron LP, Jones GJ (2008) Analysing present, past and future tropical cyclone activity as inferred from an ensemble of coupled global climate models. Tellus 60 A:80–96

    Google Scholar 

  • Chan JCL (2006) Comment on “changes in tropical cyclone number, duration and intensity in a warming environment. Science 311:1713

    Article  Google Scholar 

  • Chan JCL, Liu KS (2004) Global warming and western North Pacific typhoon activity from an observational perspectiver. J Clim 70:4590–4602

    Article  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Koli RK, Kwon W-T, Laprise R, Rueda VM, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. Climate change 2007: the physical science basis. Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (ed) Climate Change 2007. Cambridge University Press, Cambridge, pp 847–940

  • Crimp SJ, Mason SJ (1999) The extreme precipitation event of 11 to 16 February 1996 over South Africa. Meteorol Atmos Phys 70:29–42. doi:10.1007/s007030050023

    Article  Google Scholar 

  • De Maria M (1996) The effect of vertical shear on tropical cyclone intensity change. J Atmos Sci 53:2076–2087

    Article  Google Scholar 

  • Elsner BE, Kossin JP, Jagger TH (2008) The increasing intensity of the strongest tropical cyclones. Nature 455:92–95. doi:10.1038/nature07234

    Article  Google Scholar 

  • Emanuel KA (1995) Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J Atmos Sci 52:3969–3976

    Article  Google Scholar 

  • Emanuel KA and Nolan DS (2004) Tropical cyclone activity and global climate. In: Proceedings of 26th conference on hurricanes and tropical meteorology. American Meteorological Society, Miami, pp 240–241

  • Engelbrecht FA (2005) Simulations of climate and climate change over Southern and tropical Africa with the conformal-cubic atmospheric model. In: Schulze RE (ed) Climate change and water resources in Southern Africa: studies on scenarios, impacts, vulnerabilities and adaptation. Water Research Commission: Pretoria, RSA, WRC Report 1430/1/05

  • Engelbrecht FA, McGregor JL, Engelbrecht CJ (2009) Dynamics of the conformal cubic atmospheric model projected climate-change signal over southern Africa. Int J Clim 29:1013–1033

    Article  Google Scholar 

  • Engelbrecht FA, Landman WA, Engelbrecht CJ, Landman S, Bopape MM, Roux B, McGregor JL, Thatcher M (2011) Multi-scale climate modeling over Southern Africa using a variable-resolution global model. Water SA 37:647–658

    Article  Google Scholar 

  • Engelbrecht CJ, Engelbrecht FA, Dyson LL (2012) High-resolution model-projected changes in mid-tropospheric closed lows and extreme rainfall over southern Africa. Int J Climatol. doi:10.1002/joc.3420

    Google Scholar 

  • Franklin JL, Feuer SE, Kaplan J, Aberson SD (1996) Tropical cyclone motion and surrounding flow relationships: searching for beta gyres in omega dropsonde datasets. Mon Weather Rev 124:64–84

    Article  Google Scholar 

  • Garner ST, Held IM, Knutson T, Sirutis J (2009) The roles of wind shear and thermal stratification in past and projected changes of atlantic tropical cyclone activity. J Clim 22:4723–4734. doi:10.1175/2009JCLI2930.1

    Article  Google Scholar 

  • Gibelin A-L, Déqué M (2003) Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Clim Dyn 20:327–339. doi:10.1007/s00382-002-0277-1

    Google Scholar 

  • Gray WM (1988) Environmental influences on tropical cyclones. Aust Meteorol Mag 36:127–139

    Google Scholar 

  • Gray WM (1998) The formation of tropical cyclones. Met Atmos Phys 76:37–69

    Article  Google Scholar 

  • Harr PA, Elsberry RL (1991) Tropical cyclone track characteristics as a function of large-scale circulation anomalies. Mon Weather Rev 119:1448–1467

    Article  Google Scholar 

  • Henderson-Sellers A, Zhang H, Emanuel K, Gray W, Lnadsea C, Holland G, Lighthill J, Shieh S-L, Webster P, McGuffie K (1998) Tropical cyclones and global climate change: a post IPCC assessment. Bull Am Met Soc 79(1):19–38

    Article  Google Scholar 

  • Holland GJ (1997) The maximum potential intensity of tropical cyclones. J Atmos Sci 54:2519–2541

    Article  Google Scholar 

  • Jury M (1993) A preliminary study of climatological associations and characteristics of tropical cyclones in the SW Indian Ocean. Meteorol Atmos Phys 51:101–115

    Article  Google Scholar 

  • Jury M, Pathack B (1991) A study of climate and weather variability over the tropical southwest Indian Ocean. Meteorol Atmos Phys 47:37048

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Derber J, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetma A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Katzfey JJ, McGregor JL, Nguyen KC, Thatcher M (2009) Dynamical downscaling techniques: impacts on regional climate change signals. In: Anderssen RS, Braddock RD and Newham LTH (eds) 18th world IMACS congress and MODSIM09 international congress on modelling and simulation. Modelling and simulation society of Australia and New Zealand and International Association for Mathematics and Computers in Simulation, July 2009, pp 2377–2383. ISBN:978-0-9758400-7-8

  • Klotzbach PJ (2006) Trends in global tropical cyclone activity over the past twenty years (1986–2005). Geophys Res Let 33:L10805. doi:10.1029/2006GL025881

    Article  Google Scholar 

  • Knapp KR, Kruk MC, Levinson DH, Diamond HJ, Neumann CJ (2010) The International Best Track Archive for Climate Stewardship: unifying tropical cyclone best track data. Bull Am Meteorol Soc 91:363–376

    Article  Google Scholar 

  • Knutson TR, Tuleya RE, Shen W, Ginis I (2001) Impact of CO2-induced warming on hurricane intensirties as simulated in a hurricane model with ocean coupling. J Clim 14:2458–2468

    Article  Google Scholar 

  • Knutson TR, McBride JL, Chan J, Emanuel K, Holland G, Landsea C, Held I, Kossin JP, Srivastava AK, Sugi M (2010) Tropical cyclones and climate change. Nat Geosci 3:157–163

    Article  Google Scholar 

  • Kossin JP, Knapp KR, Vimont DJ, Murnane RJ, Harper BA (2007) A globally consistent reanalysis of hurricane variability. Geophys Res Lett 34:L04815

    Article  Google Scholar 

  • Kuleshov Y, Fawcett R, Qi L, Trewin B, Jones D, McBride J, Ramsay H (2010) Trends in tropical cyclones in the South Indian Ocean and the South Pacific Ocean. J Geophys Res 115:D01101. doi:10.1029/2009JD012372

    Article  Google Scholar 

  • Lambert SJ (1988) A cyclone climatology of the Canadian Climate Centre general circulation model. J Clim 1:109–115

    Google Scholar 

  • Landman WA, Seth A, Camargo SJ (2005) The effect of regional climate model domain choice on the simulation of tropical cyclone-like vortices in the southwestern Indian Ocean. J Clim 18:1263–1274

    Article  Google Scholar 

  • Landsea CW, Harper BA, Hoarau K, Knaff JA (2006) Can we detect trends in extreme tropical cyclones? Science 313:452–454

    Article  Google Scholar 

  • Liebmann B, Hendon HH, Glick JD (1994) The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden-Julian oscillation. J Meteorol Soc Jpn 72(3):401–412

    Google Scholar 

  • Malherbe J, Engelbrecht FA, Landman WA, Engelbrecht CJ (2012) Tropical systems from the southwest Indian Ocean making landfall over the Limpopo River Basin, southern Africa: a historical perspective. Int J Climatol. doi:10.1002/joc.2320

    Google Scholar 

  • Martin LM, Chan CL (2004) Tropical cyclone intensity and vertical wind shear. Bull Am Meteorol Soc 61:1859–1876

    Google Scholar 

  • Mavume AF, Rydberg L, Rouault M, Lutjeharms JRE (2009) Climatology and landfall of tropical cyclones in the southwest Indian Ocean. WIO J Mar Sci 8(1):15–36

    Google Scholar 

  • McDonald RE, Bleaken DG, Cresswell DR, Pope VD, Senior CA (2005) Tropical storms: representation and diagnoses in climate models and the impacts of climate change. Clim Dyn 25:19–36

    Article  Google Scholar 

  • McGregor JL (1996) Semi-Lagrangian advection on conformal-cubic grids. Mon Weather Rev 124:1311–1322

    Article  Google Scholar 

  • McGregor JL (2005a) Geostrophic adjustment for reversibly staggered grids. Mon Weather Rev 133:1119–1128

    Article  Google Scholar 

  • McGregor JL (2005b) C-CAM: geometric aspects and dynamical formulation. CSIRO Atmospheric Research Tech. Paper No. 70. p 43

  • McGregor JL, Dix MR (2001) The CSIRO conformal-cubic atmospheric GCM. In: Hodnett PF (ed) IUTAM symposium on advances in mathematical modelling of atmosphere and ocean dynamics. Kluwer, Dordrecht, pp 197–202

    Chapter  Google Scholar 

  • Murakami H, Wang B (2010) Future change of North Atlantic tropical cyclone tracks: projection by a 20-km-Mesh Global Atmospheric Model. J Clim 23:2699–2721

    Article  Google Scholar 

  • Nguyen KC, Walsh KJE (2001) Interannual, decadal, and transient greenhouse simulation of tropical cyclone-like vortices in a regional climate model of the South Pacific. J Clim 14:3043–3054

    Article  Google Scholar 

  • Nicholls N, Landsea C, Gill J (1998) Recent trends in Australian region tropical cyclone activity. Met Atmos Phys 65:197–205

    Article  Google Scholar 

  • Oouchi K, Yoshimura J, Yoshimura H, Mizuta R, Kusunoki S, Noda A (2006) Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: frequency and wind intensity analysis. J Met Soc Jpn 84(2):259–276

    Article  Google Scholar 

  • Ose T, Arakawa O (2009) Characteristics of the CMI3 models simulating realistic response of Tropical Western Pacific precipitation to Nino3 SST variability. J Met Soc Jpn 87(4):807–819. doi:10.2151/jmsj.87.807

    Article  Google Scholar 

  • Reason CJC, Keibel A (2004) Tropical cyclone eline and its unusual penetration over the Southern African mainland. Weather Forecast 19:789–805. doi:10.1175/1520-0434(2004)019<0789:TCEAIU>2.0.CO

    Article  Google Scholar 

  • Royer J-F, Chauvin F, Timbal P, Araspin P, Grimal D (1998) A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones. Clim Change 38:307–343

    Article  Google Scholar 

  • Sall SM, Sauvaeot H, Gaye AT, Viltard A, de Felice P (2006) A cyclogenesis index for tropical Atlantic off the African coasts. Atmos Res 79:123–147

    Article  Google Scholar 

  • Sato N, Takahashi C, Seiki A, Yoneyama R, Ryuichi S (2009) An evaluation of the reproducibility of the Madden-Julian oscillation in the CMIP3 multi-models. J Met Soc Jpn 87:791–805. doi:10.2151/jmsj.87.791

    Article  Google Scholar 

  • Schenkel BA, Hart RE (2012) An examination of tropical cyclone position, intensity, and intensity life cycle within atmospheric reanalysis datasets. J Clim 25:3453–3475. doi:10.1175/2011JCLI4208.1

    Article  Google Scholar 

  • Singh OP, Khan TMA, Rahman MDS (2001) Probable reasons for enhanced cyclogenesis in the Bay of Bengal during July–August of ENSO years. Glob Planet Change 29:135–147. doi:10.1016/S0921-8181(00)00090-4

    Article  Google Scholar 

  • Sugi M, Noda A (2002) Influence of global warming on tropical cyclone climatology: an experiment with the JMA global model. J Met Soc Jpn 80:249–272

    Article  Google Scholar 

  • Sugi M, Murakami H, Yoshimura J (2009) A reduction in global tropical cyclone frequency due to global warming. Sola 5:164–167. doi:10.2151/sola.2009-042

    Article  Google Scholar 

  • Taljaard JJ (1985) Cut-off lows in the South African region. SA Weather Bureau Technical Paper 14:153

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192

    Article  Google Scholar 

  • Terray L, Demoray M-E, Déqué M, De Coetlogon G, Maisonnave E (2004) Simulation of late-twenty-first-century changes in wintertime atmospheric circulation over Europe due to anthropogenic causes. J Clim 17:4630–4635

    Article  Google Scholar 

  • Thatcher M, McGregor JL (2009) Using a scale-selective filter for dynamical downscaling with the conformal cubic atmospheric model. Mon Weather Rev 137:1742–1752

    Article  Google Scholar 

  • Tsutsui T (2002) Implications of anthropogenic climate change for tropical cyclone activity: a case study with the NCAR CCM2. J Met Soc Jpn 80:45–65

    Article  Google Scholar 

  • Van Ulden AP, Van Oldenborgh GJ (2006) Large-scale atmospheric circulation biases and changes in global climate model simulations and their importance for climate change in Central Europe. Atm Chem Phys 6:863–881

    Article  Google Scholar 

  • Vimont DJ, Kossin JP (2007) The Atlantic meridional mode and hurricane activity. Geophys Res Lett 34:L107709. doi:L10.1029/2006GL029683

    Article  Google Scholar 

  • Vitart F, Anderson L, Stern WF (1999) Impact of large-scale circulation on tropical storm frequency, intensity, and location, simulated by an ensemble of GCM integrations. J Clim 12:3237–3254. doi:10.1175/1520-0442(1999)012<3237:IOLSCO>2.0.CO;2

    Article  Google Scholar 

  • Vitart F, Anderson A, Stockdale T (2003) Seasonal forecasting of tropical cyclone landfall over Mozambique. J Clim 16:3932–3945. doi:10.1175/1520-0442(2003)016<3932:SFOTCL>2.0.CO

    Article  Google Scholar 

  • Walsh KJE, Katzfey JJ (2000) The impact of climate change on the poleward movement of tropical cyclone-like vortices in a regional climate model. J Clim 13:1116–1132

    Article  Google Scholar 

  • Walsh KJE, Ryan BF (2000) Tropical cyclone intensity increase near Australia as a result of climate change. J Clim 13:3029–3036

    Article  Google Scholar 

  • Walsh K, Watterson IG (1997) Tropical cyclone-like vortices in a limited area model: comparison with observed climatology. J Clim 10:2240–2259. doi:10.1175/JCLI4074.1

    Article  Google Scholar 

  • Walsh KJE, Nguyen K-C, McGregor JL (2004) Fine resolution regional climate model simulations of the impact of climate change on tropical cyclones near Australia. Clim Dyn 22:47–56

    Article  Google Scholar 

  • Walsh KJE, Fiorino M, Landsea CW, McInnes KL (2007) Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalysis. J Clim 20:2307–2314

    Article  Google Scholar 

  • Webster PJ, Holland GJ, Curry JA, Chang H-R (2005) Changes in tropical cyclone number, duration and intensity in a warming environment. Science 309:1844–1846. doi:10.1126/science.1116448

    Article  Google Scholar 

  • Yang S, Smith EA (2008) Convective–stratiform precipitation variability at seasonal scale from 8 year of TRMM observations: implications for multiple modes of diurnal variability. J Clim 21:4087–4114. doi:10.1175/2008JCLI2096.1

    Article  Google Scholar 

  • Yoshimura J, Sugi M (2005) Tropical cyclone climatology in a high-resolution AGCM—impacts of SST warming and CO2 increase. Sola 1:133–136. doi:10.2151/sola.2005-035

    Article  Google Scholar 

  • Yu J, Wang Y (2009) Response of tropical cyclone potential intensity over the northern Indian Ocean to global warming. Geophys Res Lett 36:L03709. doi:10.1029/2008GL036742

    Article  Google Scholar 

  • Yu J, Wang Y, Hamilton K (2010) Response of tropical cyclone potential to a global warming scenario in the IPCC AR4 CGCMs. J Clim 23:1254–1373. doi:10.1175/2009JCLI2843.1

    Article  Google Scholar 

  • Zeng Z, Wang Y, Wu C–C (2007) Environmental dynamical control of tropical cyclone intensity—an observational study. Mon Weather Rev 135:38–59. doi:10.1175/MWR3278.1

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Water Research Commission (WRC Project No. K5/1847) in South Africa, as well as the Agricultural Research Council and the Council for Scientific and Industrial Research, South Africa, for supporting this research. All the regional climate simulations were performed on the computer clusters of the Centre for High performance Computing (CHPC) in South Africa. We also thank the two anonymous reviewers for useful comments towards improving this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Malherbe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malherbe, J., Engelbrecht, F.A. & Landman, W.A. Projected changes in tropical cyclone climatology and landfall in the Southwest Indian Ocean region under enhanced anthropogenic forcing. Clim Dyn 40, 2867–2886 (2013). https://doi.org/10.1007/s00382-012-1635-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1635-2

Keywords

Navigation