Skip to main content

The meso-scale drivers of temperature extremes in high-latitude Fennoscandia

Abstract

Extreme temperatures are key drivers controlling both biotic and abiotic processes, and may be strongly modified by topography and land cover. We modelled mean and extreme temperatures in northern Fennoscandia by combining digital elevation and land cover data with climate observations from northern Finland, Norway and Sweden. Multivariate partitioning technique was utilized to investigate the relative importance of environmental variables for the variation of the three temperature parameters: mean annual absolute minima and maxima, and mean annual temperature. Generalized additive modeling showed good performance, explaining 84–95 % of the temperature variation. The inclusion of remotely sensed variables improved significantly the modelling of thermal extremes in this system. The water cover variables and topography were the most important drivers of minimum temperatures, whereas elevation was the most important factor controlling maximum temperatures. The spatial variability of mean temperatures was clearly driven by geographical location and the effects of topography. Partitioning technique gave novel insights into temperature-environment relationship at the meso-scale and thus proved to be useful tool for the study of the extreme temperatures in the high-latitude setting.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abisko Scientific Research Station (2012) http://www.polar.se/

  2. ACIA (2005) Arctic climate impact assessment. Cambridge University Press, Cambridge, p 1040

  3. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  4. Anderson M, Gribble N (1998) Partitioning the variation among spatial, temporal and environmental components in a multivariate data set. Aust J Ecol 23:158–167

    Article  Google Scholar 

  5. Atkinson D, Gajewski K (2002) High-resolution estimation of summer surface air temperature in the canadian arctic archipelago. J Clim 15:3601–3614

    Article  Google Scholar 

  6. Autio J, Heikkinen O (2002) The climate of northern Finland. Fennia 180(1–2):61–66

    Google Scholar 

  7. Betrie G, Mohamed Y, van Griensven A, Srinivasan R (2011) Sediment management modelling in the Blue Nile Basin using SWAT model. Hydrol Earth Syst Sci 15:807–818

    Article  Google Scholar 

  8. Billings W, Bliss L (1959) An alpine snowbank environment and its effects on vegetation, plant deveploment, and productivity. Ecology 40(3):388–397

    Article  Google Scholar 

  9. Billings W, Mooney H (1968) The ecology of arctic and alpine plants. Biol Rev 43:481–529

    Article  Google Scholar 

  10. Bootsma A (1976) Estimating minimum temperature and climatological freeze risk in hilly terrain. Agric Meteorol 16(3):425–443

    Article  Google Scholar 

  11. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73(3):1045–1055

    Article  Google Scholar 

  12. Bowman W, Seastedt T (2001) Structure and function of an alpine ecosystem. Oxford University Press, Oxford

    Google Scholar 

  13. Brom J, Pokorný J (2009) Temperature and humidity characteristics of two willow stands, a peaty meadow and a drained pasture and their impact on landscape functioning. Boreal Environ Res 14:389–403

    Google Scholar 

  14. Bruun H, Moen J, Virtanen R, Grytnes J, Oksanen L, Angerbjorn A (2006) Effects on altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. J Veg Sci 17:37–46

    Article  Google Scholar 

  15. Chapin F (1983) Direct and indirect effects of temperature on arctic plants. Polar Biol 2:47–52

    Article  Google Scholar 

  16. Chapin F, McGuire A, Randerson J, Pielke sr R, Baldocchi D, Hobbie S, Roule N, Eugster W, Kasischke E, Rastetter E, Zimov S, Running S (2000) Arctic and boreal ecosystems of western North America as components of the climate system. Global Change Biol 6:211–223

    Article  Google Scholar 

  17. Chapin F, Sturm M, Serreze M, McFadden J, Key J, Lloyd A, McGuire A, Rupp T, Lynch A, Schimel J, Beringer J, Chapman W, Epstein H, Euskirchen E, Hinzman L, Jia G, Ping C, Tape K, Thompson C, Walker D, Welker J (2005) Role of the land-surface changes in arctic summer warming. Science 310:657–660

    Article  Google Scholar 

  18. Christensen T, Johansson T, kerman H, Mastepanov N M Malmer, Friborg T, Crill P, Svensson B (2004) Thawing sub-arctic permafrost: effects on vegetation and methane emissions. Geophys Res Lett 31(L04501):680. doi:10.1029/2003GL018

  19. Clements G, Whiteman C, Horel J (2003) Cold-air-pool structure and evolution in a mountain basin: Peter Sinks, Utah. J Appl Meteorol 42:752–768

    Article  Google Scholar 

  20. Daly C (2006) Guidelines for assessing the suitability of spatial climate data sets. Int J Clim 26:707–721

    Article  Google Scholar 

  21. Eggelsmann R, A H, Grosse-Brauckmann G, Küster E, Naucke W, Schuch M, Schweickle V (1993) Physical processes and properties of mires. In: Heathwaite A (ed) Mires: process, exploitation and conservation. Wiley, Chichester

    Google Scholar 

  22. Eugster W, Rouse W, Pielke sr R, McFadden J, Baldocchi D, Kittel T, Chapin III F, Liston G, Vidale P, Vaganov E, Chambers S (2000) Land-atmosphere energy exchange in arctic tundra and boreal forest: available data and feedbacks to climate. Global Change Biol 6:84–115

    Article  Google Scholar 

  23. European Environment Agency (2012) Corine Land Cover 2006 raster data. http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-1/

  24. Foley J, Heil Costa M, Delire C, Ramankutty N, Snyder P (2003) Green surprise? How terrestrial ecosystems could affect earth’s climate. Front Ecol Environ 1:38–44

    Google Scholar 

  25. Fox J (1981) Intermediate levels of soil disturbance maximize alpine plant diversity. Nature 293:564–565

    Article  Google Scholar 

  26. French H (2007) The periglacial environment. Wiley, Chich

    Book  Google Scholar 

  27. Fronzek S, Luoto M, Carter T (2006) Potential effect of climate change on the distribution of palsa mires in subarctic Fennoscandia. Clim Res 32:1–12

    Article  Google Scholar 

  28. Greenland D, Losleben M (2001) Climate. In: Bowman WD, Seastedt TR (eds) Structure and function of an alpine ecosystem. Oxford University Press, Oxford

    Google Scholar 

  29. Guisan A, Edwards T, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model 157:89–100

    Article  Google Scholar 

  30. Hastie T, Tibshirani R (1990) Generalized additive models, monographs on statistics and applied probability, vol 43. Chapman and Hall, New York

    Google Scholar 

  31. Haugen R, Brown J (1980) Coastal-inland distributions summer air temperature and precipitation in northern Alaska. Arct Alp Res 12(4):403–412

    Article  Google Scholar 

  32. Heikkinen R, Luoto M, Virkkala R, Rainio K (2004) Effects of habitat cover, landscape structure and spatial variables on the abundance of birds in a agricultural-forest mosaic. J Appl Ecol 41:824–835

    Article  Google Scholar 

  33. Heikkinen R, Luoto M, Kuussaari M, poyry J (2005) New insights into butterfly-environment relationship using partitioning methods. Proc R Soc 272:2203–2210

    Article  Google Scholar 

  34. Hjort J, Luoto M (2010) Geodiversity of high-latitude landscapes in northern Finland. Geomorphology 115:109–116

    Article  Google Scholar 

  35. Holdaway M (1996) Spatial modelling and interpolation of monthly temperature using kriging. Clim Res 6:215–225

    Article  Google Scholar 

  36. Jarvis C, Stuart N (2001) A comparison among strategies for interpolating maximum and minimum daily air temperatures. Part 1: the selection of guiding topographic and land cover variales. J Appl Meteorol 40:1060–1074

    Article  Google Scholar 

  37. Jonasson S, Lee J, Callaghan T, Havström M, Parsons A (1996) Direct and indirect effects of increasing temperatures on subarctic ecosystems. Ecol Bull 45:180–191

    Google Scholar 

  38. Körner C (1998) A re-assessment of high elevation treeline position and their explanation. Oecologia 115(4):445–459

    Article  Google Scholar 

  39. Laaksonen K (1976) The dependence of mean air temperatures upon latitude and altitude in Fennoscandia (1921–1950). Ann Acad Sci Fennicae A III 119:19

    Google Scholar 

  40. Laaksonen K (1977) The influence of sea areas upon mean air temperatures in Fennoscandia (1921–1950). Fennia 151:57–128

    Google Scholar 

  41. Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673

    Article  Google Scholar 

  42. Legendre P (2008) Studying beta diversity: ecological variation partitioning by multiple regression and canonical analysis. Plant Ecol 1(1):3–8

    Google Scholar 

  43. Legendre P, Dale M, Fortin M, Gurevitch J, Hohn J, Myers D (2002) The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography 25:601–615

    Article  Google Scholar 

  44. Lindkvist L, Gustavsson T, Bogren J (2000) A frost assessment method for mountainous areas. Agric Meteorol 102:51–67

    Article  Google Scholar 

  45. Livingstone D, Lotter A (1998) The relationship between air temperature and water temperatures in lakes of the Swiss Plateu: a case study with palælimnological implications. J Paleolimnol 19:181–198

    Article  Google Scholar 

  46. Livingstone D, Lotter A, Walker I (1999) The decrease in summer water temperature with altitude in swiss alpine lakes: a comparison with air temperature lapse rates. Arct Antarct Alp Res 31(4):341–352

    Article  Google Scholar 

  47. Luoto M, Hjort J (2006) Scale matters—a multi-resolution study of the determinants of patterned ground activity in subarctic Finland. Geomorphology 80:282–294

    Article  Google Scholar 

  48. Mac Nally R (2002) Multiple regression and inference ecology and conservation biology: further comments on identifying important predictor variables. Biodivers Conserv 11:1397–1401

    Article  Google Scholar 

  49. Marchand F, Kockelbergh F, Vijver B, Beyens L, Nijs I (2005) Are heat and cold resistance of arctic species affected by successive extreme temperature events? New Phytol 170:291–300

    Article  Google Scholar 

  50. Marra G, Wood S (2011) Practical variable selection for generalized additive models. Comput Stat Data Anal 55:2372–2387

    Article  Google Scholar 

  51. McCullagh P, Nelder J (1989) Generalized linear models, monographs on statistics and applied probability, vol 37, 2nd edn. Chapman and Hall, New York

    Google Scholar 

  52. Mellert K, Fensterer V, Küchenhoff H, Reger B, Kölling C, Klemmt H, Ewald J (2011) Hypothesis-driven species distribution models for tree species in the Bavarian Alps. J Veg Sci 22:635–646

    Article  Google Scholar 

  53. Norwegian Meteorological Institute (2012) eKlima. http://www.eklima.met.no/

  54. Pajunen H (2005) Mires. In: Seppälä M (ed) The physical geography of Fennoscandia. Oxford University Press, Oxford

    Google Scholar 

  55. Parmesan C, Root T, Willig M (2000) Impacts of extreme weather and climate on terrestrial biota. Bull Am Meteorol Soc 81(3):443–450

    Article  Google Scholar 

  56. Parviainen M, Luoto M (2007) Climate envelopes of mire complex types in Fennoscandia. Geogr Ann Ser A Phys Geogr 89(2):137–151

    Article  Google Scholar 

  57. Peres-Neto P, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87(10):2614–2625

    Article  Google Scholar 

  58. Perry M, Hollis D (2005) The generation of monthly gridded datasets for a range of climatic variables over the UK. Int J Climatol 25:1041–1054

    Article  Google Scholar 

  59. Pike G, Pepin N, Schaefer M (2012) High latitude local scale temperature complexity: the example of kevo valley, finnish lapland. Int J Climatol. doi:10.1002/joc.3573

  60. Pirinen P, Simola H, Aalto J, Kaukoranta JP, Karlsson P, Ruuhela R (2012) Climatological statistics of Finland 1981–2010. Finnish Meteorological Institute Reports 2012(1), pp 83

  61. Post E, Forchhammer M, Bret-Harte S, Callaghan T, Christensen T, Elberling B, Fox A, Gilg O, Hik D, Høye T, Ims R, Jeppesen E, Klein D, Madsen J, McGuire A, Rysgaard S, Schindler D, Stirling I, Tamstorf M, Tyler N, van der Wal R, Welker J, Wookey P, Schmidt N, Aastrup P (2009) Ecological dynamics across the arctic associated with recent climate change. Science 325:1355–1358

    Article  Google Scholar 

  62. Rolland C (2002) Spatial and seasonal variations of air temperature lapse rates in alpine regions. J Clim 16:1032–1046

    Article  Google Scholar 

  63. le Roux PC, Virtanen R, Heikkinen R, Luoto M (2012) Biotic interactions affect the elevational ranges of high-latitude plant species. Ecography 35:1048–1056

    Article  Google Scholar 

  64. Scherrer D, Körner C (2010) Infra-red thermometry of alpine landscapes challenges climatic warming projections. Global Change Biol 16:2602–2613

    Google Scholar 

  65. Scherrer D, Körner C (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr 38:406–416

    Article  Google Scholar 

  66. Scherrer D, Schmid S, Körner C (2011) Elevational species shifts in a varmer climate are overestimated when based on weather station data. Int J Biometeorol 55:645–654

    Article  Google Scholar 

  67. Solantie R (1976) The influences of lakes on meso-scale analysis of temperature in Finland. Finnish Meteorological Institute Reports 30, p 130 (in Finnish)

    Google Scholar 

  68. Solantie R (1990) The climate of Finland in relation to its hydrology, ecology and culture. Finnish Meteorological Institute, Helsinki

    Google Scholar 

  69. Solantie R, Drebs A (2000) The mean annual maximum and minimum temperature in Finland 1961–1990. Finnish Meteorological Institute reports 6

  70. Stone P, Carlson J (1979) Atmospheric lapse rate regimes and their parametrization. J Atmos Sci 36:415–423

    Article  Google Scholar 

  71. Swanson F, Kratz T, Caine N, Woodmansee R (1988) Landform effects on ecosystem patterns and processes. BioScience 38(2):92–98

    Article  Google Scholar 

  72. Swedish Meteorological and Hydrological Institute (2012) Smhi. http://www.smhi.se/

  73. Tikkanen M (2005) Climate. In: Seppälä M (eds) The physical geography of Fennoscandia. Oxford University Press, Oxford

    Google Scholar 

  74. Tveito O, Forland E, Heino R, Hanssen-Bauer I, Alexandersson H, Dahlstrom B, Drebs A, Kern-Hansen C, Jonsson E T Varby Laursen, Westman Y (2000) Nordic temperature maps. DNMI Report 09/00 KLIMA Oslo

  75. Tveito O, Forland E, Alexandersson H, Drebs A, Jonsson T, Tuomenvirta H, Varby-Laursen E (2001) Nordic climate maps. DNMI Report 06/01 KLIMA Oslo

  76. USGS (2004) Shuttle radar topography mission. Global land cover facility, University of Maryland, College Park, Maryland, February 2000

  77. Vajda A, Venäläinen A (2003) The influence of natural conditions on the spatial variation of climate in Lapland, northern Finland. Int J Climatol 23:1011–1022

    Article  Google Scholar 

  78. Virtanen T, Neuvonen S, Nikula A (1998) Modelling topoclimatic patterns of egg mortality of epirrita autumnata (lepidoptera: Geometridae) with geographical information system: predictions for current climate and warmer climate scenarios. J Appl Ecol 35(2):311–322

    Article  Google Scholar 

  79. Walker M, Webber P, Arnold E, Ebert-May D (1994) Effects of interannual climate variation on aboveground phytomass in alpine vegetation. Ecology 75(2):393–408

    Article  Google Scholar 

  80. Wood E (1991) Land surface—atmosphere interactions for climate modeling. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  81. Wood S (2004) Stable and efficient multiple smoothing parameter estimation for generalized additive models. J Am Stat Assoc 99:673–686

    Article  Google Scholar 

  82. Wood S (2006) Generalized additive models: an introduction with R. Chapman & Hall, London

    Google Scholar 

  83. Wood S (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc Ser B (Statistical Methodology) 73(1):3–36

    Article  Google Scholar 

  84. Wood S, Augustin N (2002) GAMs with integrated model selection using penalized regression splines and applications to environmental modeling. Ecol Model 157:157–177

    Article  Google Scholar 

  85. Zhenlin Y, Edward H, Gallaghan T (2011) Modelling surface-air-temperature variation over complex terrain around abisko, swedish lapland: uncertainties of measurements and models at different scales. Geografiska Ann Ser A Phys Geogr 93(2):89–112

    Article  Google Scholar 

  86. Zimmermann N, Edwards Jr T, Moisen G, Frescino T, Blackard J (2007) Remote sensing-based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah. J Appl Ecol 44:1057–1067

    Article  Google Scholar 

  87. Zimmermann N, Yoccoz N, Edwards T, Meier E, Thuiller W, Guisan A, Schmatz D, Pearman P (2009) Climatic extremes improve predictions of spatial patterns of three species. Proc Natl Acad Sci USA 106:19,723–19,728

    Article  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge Pentti Pirinen who provided assistance with the climate data base of Finnish Meteorological Institute. We also thank two anonymous reviewers for their constructive and valuable comments on the manuscript. This study was funded by the Geography Graduate School.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Juha Aalto.

Appendix

Appendix

See Table 5 and Fig. 9a, b.

Table 5 The climate stations used in this study
Fig. 9
figure9

The standard deviation of the A) minimum temperature and B) maximum temperature predictions based on GAM models with 100 repeats and 70 % random sample of the observations

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aalto, J., le Roux, P.C. & Luoto, M. The meso-scale drivers of temperature extremes in high-latitude Fennoscandia. Clim Dyn 42, 237–252 (2014). https://doi.org/10.1007/s00382-012-1590-y

Download citation

Keywords

  • Subarctic Fennoscandia
  • Extreme temperatures
  • Variation partitioning
  • Generalized additive models