Climate Dynamics

, Volume 40, Issue 3–4, pp 651–662 | Cite as

On the effect of decreasing CO2 concentration in the atmosphere

  • Isabella Bordi
  • Klaus Fraedrich
  • Alfonso Sutera
  • Xiuhua Zhu
Article

Abstract

In the present paper the effect of an abrupt change of the atmospheric radiative forcing is investigated by means of a global climate model that includes a mixed layer ocean. In assessing if, under such a change, the model response has a bifurcation point, the steady solution is studied for a sudden decrease of CO2 concentration from its actual value. It is found that there is a critical threshold for CO2 content below which the model ends up to a snowball Earth. It occurs for a few percentage changes of CO2 concentration around the threshold because the model strongly depends on the relationship among atmospheric temperature, water vapor content and the sudden ice-albedo feedback activation, even in the subtropical regions. Moreover, results suggest that the transition to ice-covered Earth is clearly favoured when Q-flux corrections (i.e. the parameterization of ocean heat transports) are removed.

Keywords

Radiative forcing change Hysteresis cycle Global climate model Energy balance model 

References

  1. Berk A, Bernstein LS, Robertson DC (1989) MODTRAN: A moderate resolution model for LOWTRAN 7. Air Force Geophys Lab, Bedford, MA, Rep GL-TR-89-0122Google Scholar
  2. Bordi I, Dell’Aquila A, Speranza A, Sutera A (2004) On the midlatitude tropopause height and the orographic-baroclinic adjustment theory. Tellus 56A:278–286Google Scholar
  3. Bordi I, Fraedrich K, Lunkeit F, Sutera A (2007) Tropospheric double-jets, meridional cells and eddies: a case study and idealized simulations. Mon Weather Rev 135:3118–3133CrossRefGoogle Scholar
  4. Bordi I, Fraedrich K, Sutera A, Zhu X (2012a) On the climate response to zero ozone. Theor Appl Climatol 109:253–259CrossRefGoogle Scholar
  5. Bordi I, Fraedrich K, Sutera A, Zhu X (2012b) Transient response to well-mixed greenhouse gas changes. Theor Appl Climatol 109:245–252CrossRefGoogle Scholar
  6. Budyko MI (1969) The effect of solar radiation variations on the climate of the Earth. Tellus 21:611–619CrossRefGoogle Scholar
  7. Caldeira K, Kasting JF (1992) Susceptibility of the early earth to irreversible glaciation caused bycarbon dioxide clouds. Nature 359:226–228CrossRefGoogle Scholar
  8. Crowley TJ, Hyde WT, Peltier WR (2001) CO2 levels required for deglaciation of a ‘‘Near-Snowball’’ Earth. Geophys Res Lett 28:283–286CrossRefGoogle Scholar
  9. Dahms E, Borth H, Lunkeit F, Fraedrich K (2011) ITCZ splitting and the influence of large-scale eddy fields on the tropical mean state. J Met Soc Japan 89:399–411Google Scholar
  10. Dekker SC, de Boer HJ, Brovkin V, Fraedrich K, Wassen MJ, Rietkerk M (2010) Biogeophysical feedbacks trigger shifts in the modelled climate system at multiple scales. Biogeosciences 7:1237–1245CrossRefGoogle Scholar
  11. Donnadieu Y, Goddéris Y, Ramstein G, Nédélec A, Meert J (2004) A ‘snowball earth’ climate triggered by continental break-up through changes in runoff. Nature 428(6980):303–306CrossRefGoogle Scholar
  12. Eliasen E, Machenhauer B, Rasmussen E (1970) On a numerical method for integration of the hydrodynamical equations with a spectral representation of the horizontal fields. Institute of Theoretical Meterology, University of Copenhagen, Denmark, Rep 2Google Scholar
  13. Fraedrich K (1978) Structural and stochastic analysis of a zero-dimensional climate system. Q J R Meteorol Soc 104:461–474CrossRefGoogle Scholar
  14. Fraedrich K, Lunkeit F (2008) Diagnosing the entropy budget of a climate model. Tellus 60A:921–931Google Scholar
  15. Fraedrich K, Jansen H, Kirk E, Luksch U, Lunkeit F (2005a) The planet simulator: towards a user friendly model. Meteorol Zeitschrift 14:299–304CrossRefGoogle Scholar
  16. Fraedrich K, Jansen H, Kirk E, Lunkeit F (2005b) The planet simulator: green planet and desert world. Meteorol Zeitschrift 14:305–314CrossRefGoogle Scholar
  17. Garreaud RD, Molina A, Farias M (2010) Andean uplift, ocean cooling and Atacama hyperaridity: a climate modeling perspective. Earth Planet Sci Lett 292:39–50CrossRefGoogle Scholar
  18. Green AES (1964) Attenuation by ozone and the earth’s albedo in the middle ultraviolet. Appl Opt 3:203–208CrossRefGoogle Scholar
  19. Grosfeld K, Lohmann G, Rimbu N, Fraedrich K, Lunkeit F (2007) Atmospheric multidecadal variations in the North Atlantic realm: proxy data, observations, and atmospheric circulation model studies. Clim Past 3:39–50CrossRefGoogle Scholar
  20. Hartmann DL (1994) Global physical climatology. Academic Press, San DiegoGoogle Scholar
  21. Held IM, Winton M, Takahashi K, Delworth T, Zeng F, Vallis GK (2010) Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J Clim 23:2418–2427CrossRefGoogle Scholar
  22. Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A neoproterozoic snowball earth. Science 281(5381):1342–1346CrossRefGoogle Scholar
  23. Hu Y, Yang J (2010) Uncertainty of the CO2 threshold for melting the hard snowball Earth. Clim Past 6:1337–1350CrossRefGoogle Scholar
  24. Kiehl JT, Trenberth KE (1997) Earth‘s annual global mean energy budget. Bull Amer Meteorol Soc 78:197–208CrossRefGoogle Scholar
  25. Kuo HL (1965) On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J Atmos Sci 22:40–63CrossRefGoogle Scholar
  26. Kuo HL (1974) Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J Atmos Sci 31:1232–1240CrossRefGoogle Scholar
  27. Lacis AA, Hansen KE (1974) A parameterization for the absorption of solar radiation in the Earth’s atmosphere. J Atmos Sci 31:118–133CrossRefGoogle Scholar
  28. Lacis AA, Schmidt GA, Rind D, Ruedy RA (2010) Atmospheric CO2: principal control knob governing earth’s temperature. Science 330:356–359CrossRefGoogle Scholar
  29. Laursen L, Eliasen E (1989) On the effect of the damping mechanisms in an atmospheric general circulation model. Tellus 41A:385–400CrossRefGoogle Scholar
  30. Le Hir G, Ramstein G, Donnadieu Y, Pierrehumbert RT (2007) Investigating plausible mechanisms to trigger a deglaciation from a hard snowball earth. CR Geosci 339:274–287CrossRefGoogle Scholar
  31. Le Hir G, Donnadieu Y, Krinner G, Ramstein G (2010) Toward the snowball earth deglaciation. Clim Dyn 35:285–297CrossRefGoogle Scholar
  32. Lindzen RS (1990) Dynamics in atmospheric physics. Cambridge University Press, New YorkCrossRefGoogle Scholar
  33. Lindzen RS (1995) How cold would we get under CO2-less sky? Phys Today 48:78–80CrossRefGoogle Scholar
  34. Louis JF (1979) A parametric model of vertical eddy fluxes in the atmosphere. Bound Layer Meteor 17:187–202CrossRefGoogle Scholar
  35. Louis JF, Tiedke M, Geleyn J-F (1982) A short history of the PBL parameterisation at ECMWF. In: Proceedings, ECMWF workshop on planetary boundary layer parameterization, Reading, 25–27 Nov 1981, 59–80Google Scholar
  36. Lucarini V, Fraedrich K, Lunkeit F (2010) Thermodynamic analysis of snowball earth hysteresis experiment: efficiency, entropy production, and irreversibility. Q J R Meterol Soc 136:2–11CrossRefGoogle Scholar
  37. Marotzke J, Botzet M (2007) Present-day and ice-covered equilibrium states in a comprehensive climate model. Geophys Res Lett 34:L16704. doi:10.1029/2006GL028880
  38. Micheels A, Montenari M (2008) A snowball earth versus a slushball earth: results from neoproterozoic climate modeling sensitivity experiments. Geosph 4:401–410CrossRefGoogle Scholar
  39. North GR (1975) Theory of energy-balance climate models. J Atmos Sci 32:2033–2043CrossRefGoogle Scholar
  40. Orszag SA (1970) Transform method for calculation of vector coupled sums. J Atmos Sci 27:890–895CrossRefGoogle Scholar
  41. Pierrehumbert RT (2005) Climate dynamics of a hard snowball earth. J Geophys Res 110:D01111. doi:10.1029/2004JD005162 CrossRefGoogle Scholar
  42. Pierrehumbert RT, Abbot DS, Voigt A, Koll D (2011) Climate of the neoproterozoic. Annu Rev Earth Planet Sci 39:417–460CrossRefGoogle Scholar
  43. Roeckner E, Arpe K, Bengtsson L Brinkop S, Dümenil L, Esch M, Kirk E, Lunkeit F, Ponater M, Rockel B, Sausen R, Schlese U, Schubert S, Windelband M (1992) Simulation of the present-day climate with the ECHAM model: Impact of model physics and resolution. Max-Planck-Institut für Meteorologie, Hamburg, Rep 93Google Scholar
  44. Romanova V, Lohmann G, Grosfeld K (2006) Effect of land albedo, CO2, orography, and oceanic heat transport on extreme climates. Clim Past 2:31–42CrossRefGoogle Scholar
  45. Rondanelli R, Lindzen RS (2010) Can thin cirrus clouds in the tropics provide a solution to the faint young Sun paradox? J Geophys Res 115:D02108. doi:10.1029/2009JD012050 CrossRefGoogle Scholar
  46. Roscher M, Stordal F, Svensen H (2011) The effect of global warming and global cooling on the distribution of the latest Permian climate zones. Palaeogeogr Palaeoclimatol Palaeoecol 309:186–200CrossRefGoogle Scholar
  47. Saltzman B, Sutera A (1984) A model of the internal feedback system involved in late quaternary climatic variations. J Atmos Sci 41:736–745CrossRefGoogle Scholar
  48. Sasamori T (1968) The radiative cooling calculation for application to general circulation experiments. J Appl Meteror 7:721–729CrossRefGoogle Scholar
  49. Schmittner A, Silva TAM, Fraedrich K, Kirk E, Lunkeit F (2011) Effects of mountains and ice sheets on global ocean circulation. J Clim 24:2814–2829CrossRefGoogle Scholar
  50. Sellers WD (1969) A global climatic model based on the energy balance of the earth-atmosphere system. J Appl Meteor 8:392–400CrossRefGoogle Scholar
  51. Semtner AJ Jr (1976) A model for the thermodynamic growth of sea ice in numerical investigations of climate. J Phys Oceanogr 3:379–389CrossRefGoogle Scholar
  52. Slingo A, Slingo JM (1991) Response of the national center for atmospheric research community climate model to improvements in the representation of clouds. J Geophys Res 96:341–357CrossRefGoogle Scholar
  53. Stenzel O, Grieger B, Keller HU, Greve R, Fraedrich K, Lunkeit F (2007) Coupling planet simulator Mars, a general circulation model of the Martian atmosphere, to the ice sheet model SICOPOLIS. Planet Space Sci 55:2087–2096CrossRefGoogle Scholar
  54. Stephens GL (1978) Radiation profiles in extended water clouds. II: parameterization schemes. J Atmos Sci 35:2123–2132CrossRefGoogle Scholar
  55. Stephens GL, Ackermann S, Smith EA (1984) A shortwave parameterization revised to improve cloud absorption. J Atmos Sci 41:687–690CrossRefGoogle Scholar
  56. Sutera A (1981) On stochastic perturbation and long-term climate behaviour. Q J R Meteor Soc 107:137–151CrossRefGoogle Scholar
  57. Trenberth KE, Smith L, Qian T, Dai A, Fasullo J (2006) Estimates of the global water budget and its annual cycle using observational and model data. J Hydrometeor 8:758–769CrossRefGoogle Scholar
  58. Voigt A, Marotzke J (2010) The transition from the present-day climate to a modern snowball Earth. Clim Dyn 35:887–905CrossRefGoogle Scholar
  59. Winton M (2003) On the climatic impact of ocean circulation. J Clim 16:2875–2889CrossRefGoogle Scholar
  60. Zhu X, Fraedrich K, Blender R (2006) Variability regimes of simulated Atlantic MOC. Geophys Res Lett 33:L21603. doi:10.1029/2006GL027291 CrossRefGoogle Scholar
  61. Zhu X, Fraedrich K, Liu Z, Blender R (2010) A demonstration of long term memory and climate predictability. J Clim 23:5021–5029CrossRefGoogle Scholar
  62. Zhu X, Bothe O, Fraedrich K (2011) Summer atmospheric bridging between Europe and East Asia: influences on drought and wetness on the Tibetan Plateau. Quat Int 236:151–157CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Isabella Bordi
    • 1
  • Klaus Fraedrich
    • 2
  • Alfonso Sutera
    • 1
  • Xiuhua Zhu
    • 2
  1. 1.Department of PhysicsSapienza University of RomeRomeItaly
  2. 2.Universität HamburgHamburgGermany

Personalised recommendations