Climate Dynamics

, Volume 40, Issue 11–12, pp 3107–3134 | Cite as

The global energy balance from a surface perspective

  • Martin Wild
  • Doris Folini
  • Christoph Schär
  • Norman Loeb
  • Ellsworth G. Dutton
  • Gert König-Langlo
Article

Abstract

In the framework of the global energy balance, the radiative energy exchanges between Sun, Earth and space are now accurately quantified from new satellite missions. Much less is known about the magnitude of the energy flows within the climate system and at the Earth surface, which cannot be directly measured by satellites. In addition to satellite observations, here we make extensive use of the growing number of surface observations to constrain the global energy balance not only from space, but also from the surface. We combine these observations with the latest modeling efforts performed for the 5th IPCC assessment report to infer best estimates for the global mean surface radiative components. Our analyses favor global mean downward surface solar and thermal radiation values near 185 and 342 Wm−2, respectively, which are most compatible with surface observations. Combined with an estimated surface absorbed solar radiation and thermal emission of 161 and 397 Wm−2, respectively, this leaves 106 Wm−2 of surface net radiation available globally for distribution amongst the non-radiative surface energy balance components. The climate models overestimate the downward solar and underestimate the downward thermal radiation, thereby simulating nevertheless an adequate global mean surface net radiation by error compensation. This also suggests that, globally, the simulated surface sensible and latent heat fluxes, around 20 and 85 Wm−2 on average, state realistic values. The findings of this study are compiled into a new global energy balance diagram, which may be able to reconcile currently disputed inconsistencies between energy and water cycle estimates.

Keywords

Earth Radiation Budget Surface energy balance Global climate models Global energy balance Surface/Satellite observations CMIP5/IPCC-AR5 model evaluation 

References

  1. Allan RP, Ringer MA, Pamment JA, Slingo A (2004) Simulation of the Earth’s radiation budget by the European Centre for Medium-Range Weather Forecasts 40-year reanalysis (ERA40). J Geophys Res 109:D18107. doi:10.1029/2004JD004816 CrossRefGoogle Scholar
  2. Anderson DE, Cahalan RF (2005) The solar radiation and climate experiment (SORCE) mission for the NASA earth observing system (eos). Sol Phys 230(1–2):3–6. doi:10.1007/S11207-005-1592-6 CrossRefGoogle Scholar
  3. Barkstrom BR (1984) The earth radiation budget experiment (ERBE). Bull Am Meteorol Soc 65(11):1170–1185CrossRefGoogle Scholar
  4. Berrisford P, Kallberg P, Kobayashi S, Dee D, Uppala S, Simmons AJ, Poli P, Sato H (2011) Atmospheric conservation properties in ERA-interim. Q J Royal Meteorol Soc 137(659):1381–1399. doi:10.1002/Qj.864 CrossRefGoogle Scholar
  5. Bodas-Salcedo A, Ringer MA, Jones A (2008) Evaluation of the surface radiation budget in the atmospheric component of the hadley centre global environmental model (hadgem1). J Clim 21(18):4723–4748. doi:10.1175/2008jcli2097.1 CrossRefGoogle Scholar
  6. Chevallier F, Morcrette JJ (2000) Comparison of model fluxes with surface and top-of-the-atmosphere observations. Mon Weather Rev 128(11):3839–3852CrossRefGoogle Scholar
  7. Dutton EG (1993) An extended comparison between lowtran7 computed and observed broad-band thermal irradiances—global extreme and intermediate surface conditions. J Atmos Ocean Tech 10(3):326–336CrossRefGoogle Scholar
  8. Frohlich C (1991) History of solar radiometry and the world radiometric reference. Metrologia 28(3):111–115CrossRefGoogle Scholar
  9. Garratt JR (1994) Incoming shortwave fluxes at the surface—a comparison of gcm results with observations. J Clim 7(1):72–80CrossRefGoogle Scholar
  10. Garratt JR, Prata AJ (1996) Downwelling longwave fluxes at continental surfaces—a comparison of observations with gcm simulations and implications for the global land surface radiation budget. J Clim 9(3):646–655CrossRefGoogle Scholar
  11. Gilgen H, Wild M, Ohmura A (1998) Means and trends of shortwave irradiance at the surface estimated from global energy balance archive data. J Clim 11(8):2042–2061CrossRefGoogle Scholar
  12. Gleckler PJ, Weare BC (1997) Uncertainties in global ocean surface heat flux climatologies derived from ship observations. J Clim 10(11):2764–2781CrossRefGoogle Scholar
  13. Gupta SK, Ritchey NA, Wilber AC, Whitlock CH, Gibson GG, Stackhouse PW (1999) A climatology of surface radiation budget derived from satellite data. J Clim 12(8):2691–2710CrossRefGoogle Scholar
  14. Gutowski WJ, Gutzler DS, Wang WC (1991) Surface-energy balances of 3 general-circulation models—implications for simulating regional climate change. J Clim 4(2):121–134CrossRefGoogle Scholar
  15. Hansen J, Sato M, Kharecha P, von Schuckmann K (2011) Earth’s energy imbalance and implications. Atmos Chem Phys 11(24):13421–13449. doi:10.5194/Acp-11-13421-2011 CrossRefGoogle Scholar
  16. Hartmann DL, Short DA (1980) On the use of earth radiation budget statistics for studies of clouds and climate. J Atmos Sci 37(6):1233–1250CrossRefGoogle Scholar
  17. Hartmann DL, Ramanathan V, Berroir A, Hunt GE (1986) Earth radiation budget data and climate research. Rev Geophys 24(2):439–468CrossRefGoogle Scholar
  18. Hatzianastassiou N, Vardavas I (1999) The net radiation budget of the northern hemisphere. J Geophys Res Atmos 104(D22):27341–27359CrossRefGoogle Scholar
  19. Hatzianastassiou N, Matsoukas C, Fotiadi A, Pavlakis KG, Drakakis E, Hatzidimitriou D, Vardavas I (2005) Global distribution of Earth’s surface shortwave radiation budget. Atmos Chem Phys 5:2847–2867CrossRefGoogle Scholar
  20. Huffman GJ, Adler RF, Bolvin DT, Gu GJ (2009) Improving the global precipitation record: Gpcp version 2.1. Geophys Res Lett 36:L17808. doi:10.1029/2009gl040000 CrossRefGoogle Scholar
  21. Iacono MJ, Mlawer EJ, Clough SA, Morcrette JJ (2000) Impact of an improved longwave radiation model, rrtm, on the energy budget and thermodynamic properties of the ncar community climate model, ccm3. J Geophys Res Atmos 105(D11):14873–14890CrossRefGoogle Scholar
  22. Kato S, Rose F, Sun-Mack S, Miller W, Chen Y, Rutan D, Stephens G, Loeb N, Minnis P, Wielicki B, Winker D, Charlock T, Stackhouse P, Xu K, Collins W (2011) Improvements of top-of-atmosphere and surface irradiance computations with calipso-, cloudsat-, and modis-derived cloud and aerosol properties. J Geophys Res 116:D19209. doi:10.1029/2011JD016050 CrossRefGoogle Scholar
  23. Kato S, Loeb NG, Rutan DA, Rose FG, Sun-Mack S, Miller WF, Chen Y (2012) Uncertainty estimate of surface irradiances computed with modis-, calipso-, and cloudsat-derived cloud and aerosol properties. Surv Geophys 33(3–4):395–412. doi:10.1007/S10712-012-9179-X CrossRefGoogle Scholar
  24. Kato S, Loeb NG, Rose FG, Doelling DR, Rutan DA, Caldwell TE, Yu L, Weller R. Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J Clim (in press)Google Scholar
  25. Kiehl JT, Trenberth KE (1997) Earth’s annual global mean energy budget. Bull Am Meteorol Soc 78(2):197–208CrossRefGoogle Scholar
  26. Kim DY, Ramanathan V (2008) Solar radiation budget and radiative forcing due to aerosols and clouds. J Geophys Res Atmos 113(D2):D02203. doi:10.1029/2007jd008434 CrossRefGoogle Scholar
  27. Kopp G, Lean JL (2011) A new, lower value of total solar irradiance: evidence and climate significance. Geophys Res Lett 38:L01706. doi:10.1029/2010gl045777 CrossRefGoogle Scholar
  28. Kopp G, Lawrence G, Rottman G (2005) The total irradiance monitor (tim): science results. Sol Phys 230(1–2):129–139. doi:10.1007/S11207-005-7433-9 CrossRefGoogle Scholar
  29. Levitus S, Antonov J, Boyer T, Locarnini RA, Garcia HE, Mishonov AV (2009) Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys Res Lett 36:L07608. doi:10.1029/2008GL037155 CrossRefGoogle Scholar
  30. Li ZQ, Moreau L, Arking A (1997) On solar energy disposition: a perspective from observation and modeling. Bull Am Meteorol Soc 78(1):53–70CrossRefGoogle Scholar
  31. Loeb NG, Wielicki BA, Doelling DR, Smith GL, Keyes DF, Kato S, Manalo-Smith N, Wong T (2009) Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J Clim 22(3):748–766. doi:10.1175/2008jcli2637.1 CrossRefGoogle Scholar
  32. Loeb NG, Lyman JM, Johnson GC, Allan RP, Doelling DR, Wong T, Soden BJ, Stephens GL (2012) Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat Geosci 5(2):110–113. doi:10.1038/Ngeo1375 CrossRefGoogle Scholar
  33. Lyman JM, Good SA, Gouretski VV, Ishii M, Johnson GC, Palmer MD, Smith DM, Willis JK (2010) Robust warming of the global upper ocean. Nature 465(7296):334–337. doi:10.1038/Nature09043 CrossRefGoogle Scholar
  34. Markovic M, Jones CG, Vaillancourt PA, Paquin D, Winger K, Paquin-Ricard D (2008) An evaluation of the surface radiation budget over North America for a suite of regional climate models against surface station observations. Clim Dyn 31(7–8):779–794. doi:10.1007/s00382-008-0378-6 CrossRefGoogle Scholar
  35. Marty C, Philipona R, Delamere J, Dutton EG, Michalsky J, Stamnes K, Storvold R, Stoffel T, Clough SA, Mlawer EJ (2003) Downward longwave irradiance uncertainty under Arctic atmospheres: measurements and modeling. J Geophys Res Atmos 108(D12):4358. doi:10.1029/2002jd002937 CrossRefGoogle Scholar
  36. Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox PM (2009) Impact of changes in diffuse radiation on the global land carbon sink. Nature 458(7241):1014–1018. doi:10.1038/Nature07949 CrossRefGoogle Scholar
  37. Michalsky J, Dutton E, Rubes M, Nelson D, Stoffel T, Wesley M, Splitt M, DeLuisi J (1999) Optimal measurement of surface shortwave irradiance using current instrumentation. J Atmos Ocean Tech 16(1):55–69CrossRefGoogle Scholar
  38. Michalsky JJ, Gueymard C, Kiedron P, McArthur LJB, Philipona R, Stoffel T (2007) A proposed working standard for the measurement of diffuse horizontal shortwave irradiance. J Geophys Res Atmos 112(D16):D16112. doi:10.1029/2007jd008651 CrossRefGoogle Scholar
  39. Michalsky J, Dutton EG, Nelson D, Wendell J, Wilcox S, Andreas A, Gotseff P, Myers D, Reda I, Stoffel T, Behrens K, Carlund T, Finsterle W, Halliwell D (2011) An extensive comparison of commercial pyrheliometers under a wide range of routine observing conditions. J Atmos Ocean Tech 28(6):752–766. doi:10.1175/2010jtecha1518.1 CrossRefGoogle Scholar
  40. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: Rrtm, a validated correlated-k model for the longwave. J Geophys Res Atmos 102(D14):16663–16682CrossRefGoogle Scholar
  41. Morcrette JJ (2002) Assessment of the ecmwf model cloudiness and surface radiation fields at the arm sgp site. Mon Weather Rev 130(2):257–277CrossRefGoogle Scholar
  42. Ohmura A (2012) Present status and variations in the Arctic energy balance. Polar Sci 6:5–13CrossRefGoogle Scholar
  43. Ohmura A, Gilgen H (1993) Reevaluation of the global energy-balance. Interact Between Glob Clim Subsyst 75:93–110CrossRefGoogle Scholar
  44. Ohmura A, Gilgen H, Wild M (1989) Global energy balance archive GEBA, world climate program—water project a7. Zuercher Geografische Schriften 34. ZuerichGoogle Scholar
  45. Ohmura A, Dutton EG, Forgan B, Frohlich C, Gilgen H, Hegner H, Heimo A, Konig-Langlo G, McArthur B, Muller G, Philipona R, Pinker R, Whitlock CH, Dehne K, Wild M (1998) Baseline surface radiation network (bsrn/wcrp): new precision radiometry for climate research. Bull Am Meteorol Soc 79(10):2115–2136CrossRefGoogle Scholar
  46. Ohmura A, Bauder A, Muller H, Kappenberger G (2007) Long-term change of mass balance and the role of radiation. Ann Glaciol 46:367–374CrossRefGoogle Scholar
  47. Philipona R, Dutton EG, Stoffel T, Michalsky J, Reda I, Stifter A, Wendling P, Wood N, Clough SA, Mlawer EJ, Anderson G, Revercomb HE, Shippert TR (2001) Atmospheric longwave irradiance uncertainty: pyrgeometers compared to an absolute sky-scanning radiometer, atmospheric emitted radiance interferometer, and radiative transfer model calculations. J Geophys Res Atmos 106(D22):28129–28141CrossRefGoogle Scholar
  48. Pinker RT, Frouin R, Li Z (1995) A review of satellite methods to derive surface shortwave irradiance. Remote Sens Environ 51(1):108–124CrossRefGoogle Scholar
  49. Potter GL, Cess RD (2004) Testing the impact of clouds on the radiation budgets of 19 atmospheric general circulation models. J Geophys Res Atmos 109(D2):D02106. doi:10.1029/2003jd004018 CrossRefGoogle Scholar
  50. Qian Y, Long CN, Wang H, Comstock JM, McFarlane SA, Xie S (2012) Evaluation of cloud fraction and its radiative effect simulated by IPCC AR4 global models against ARM surface observations. Atmos Chem Phys 12(4):1785–1810. doi:10.5194/Acp-12-1785-2012 CrossRefGoogle Scholar
  51. Ramanathan V, Cess RD, Harrison EF, Minnis P, Barkstrom BR, Ahmad E, Hartmann D (1989) Cloud-radiative forcing and climate—results from the Earth radiation budget experiment. Science 243(4887):57–63CrossRefGoogle Scholar
  52. Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Atmosphere—aerosols, climate, and the hydrological cycle. Science 294(5549):2119–2124CrossRefGoogle Scholar
  53. Raschke E, Ohmura A (2005) Radiation budget of the climate system. In: Hantel M (ed) Observed global climate vol 6. Landolt-börnstein—group v geophysics, numerical data and functional relationships in science and technology. Springer, Berlin, pp 25–46. doi:10.1007/b75667 Google Scholar
  54. Roesch A, Wild M, Ohmura A, Dutton EG, Long CN, Zhang T (2011) Assessment of bsrn radiation records for the computation of monthly means. Atmos Meas Tech 4(2):339–354. doi:10.5194/Amt-4-339-2011 CrossRefGoogle Scholar
  55. Stephens GL, Wild M, Stackhouse P, L’Ecuyer T, Kato S (2012a) The global character of the flux of downward longwave radiation. J Clim 25:2329–2340. doi:10.1175/JCLI-D-11-00262.1 CrossRefGoogle Scholar
  56. Stephens GL, Li JL, Wild M, Clayson CA, Loeb N, Kato S, L’Ecuyer T, Stackhouse PW, Andrews T (2012b) The energy balance of the earth’s climate system. Nat Geosci 5:691–696. doi:10.1038/ngeo1580 Google Scholar
  57. Trager-Chatterjee C, Muller RW, Trentmann J, Bendix J (2010) Evaluation of ERA-40 and ERA-interim re-analysis incoming surface shortwave radiation datasets with mesoscale remote sensing data. Meteorol Z 19(6):631–640. doi:10.1127/0941-2948/2010/0466 CrossRefGoogle Scholar
  58. Trenberth KE, Fasullo JT (2010) Simulation of present-day and twentyfirst-century energy budgets of the Southern Oceans. J Clim 23:440–454CrossRefGoogle Scholar
  59. Trenberth KE, Fasullo JT (2012) Tracking earth’s energy: from El Nino to global warming. Surv Geophys 33(3–4):413–426. doi:10.1007/S10712-011-9150-2 CrossRefGoogle Scholar
  60. Trenberth KE, Fasullo JT, Kiehl J (2009) Earth’s global energy budget. Bull Am Meteorol Soc 90(3):311. doi:10.1175/2008bams2634.1 CrossRefGoogle Scholar
  61. Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Bechtold VD, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J Royal Meteorol Soc 131(612):2961–3012. doi:10.1256/Qj.04.176 CrossRefGoogle Scholar
  62. Wielicki BA, Barkstrom BR, Harrison EF, Lee RB, Smith GL, Cooper JE (1996) Clouds and the earth’s radiant energy system (CERES): an earth observing system experiment. Bull Am Meteorol Soc 77(5):853–868CrossRefGoogle Scholar
  63. Wild M (2005) Solar radiation budgets in atmospheric model intercomparisons from a surface perspective. Geophys Res Lett 32(7):L07704. doi:10.1029/2005gl022421 CrossRefGoogle Scholar
  64. Wild M (2008) Short-wave and long-wave surface radiation budgets in GCMs: a review based on the IPCC-AR4/CMIP3 models. Tellus A 60(5):932–945. doi:10.1111/J.1600-0870.2008.00342.X CrossRefGoogle Scholar
  65. Wild M (2012) New directions: a facelift for the picture of the global energy balance. Atmos Environ 55:366–367. doi:10.1016/j.atmosenv.2012.03.022 CrossRefGoogle Scholar
  66. Wild M, Roeckner E (2006) Radiative fluxes in the ECHAM5 general circulation model. J Clim 19(16):3792–3809CrossRefGoogle Scholar
  67. Wild M, Schmucki E (2011) Assessment of global dimming and brightening in IPCC-AR4/CMIP3 models and era40. Clim Dyn 37(7–8):1671–1688. doi:10.1007/S00382-010-0939-3 CrossRefGoogle Scholar
  68. Wild M, Ohmura A, Gilgen H, Roeckner E (1995a) Regional climate simulation with a high-resolution GCM—surface radiative fluxes. Clim Dyn 11(8):469–486CrossRefGoogle Scholar
  69. Wild M, Ohmura A, Gilgen H, Roeckner E (1995b) Validation of general-circulation model radiative fluxes using surface observations. J Clim 8(5):1309–1324CrossRefGoogle Scholar
  70. Wild M, Ohmura A, Gilgen H, Roeckner E, Giorgetta M, Morcrette JJ (1998) The disposition of radiative energy in the global climate system: GCM-calculated versus observational estimates. Clim Dyn 14(12):853–869CrossRefGoogle Scholar
  71. Wild M, Ohmura A, Gilgen H, Morcrette JJ, Slingo A (2001) Evaluation of downward longwave radiation in general circulation models. J Clim 14(15):3227–3239CrossRefGoogle Scholar
  72. Wild M, Long CN, Ohmura A (2006) Evaluation of clear-sky solar fluxes in GCMs participating in AMIP and IPCC-AR4 from a surface perspective. J Geophys Res Atmos 111(D1):D01104. doi:10.1029/2005jd006118 CrossRefGoogle Scholar
  73. Wild M, Grieser J, Schaer C (2008) Combined surface solar brightening and increasing greenhouse effect support recent intensification of the global land-based hydrological cycle. Geophys Res Lett 35(17):L17706. doi:10.1029/2008gl034842
  74. Wild M, Truessel B, Ohmura A, Long CN, Konig-Langlo G, Dutton EG, Tsvetkov A (2009) Global dimming and brightening: an update beyond 2000. J Geophys Res Atmos 114:D00d13. doi:10.1029/2008jd011382 CrossRefGoogle Scholar
  75. Wong T, Wielicki BA, Lee RB, Smith GL, Bush KA, Willis JK (2006) Reexamination of the observed decadal variability of the earth radiation budget using altitude-corrected ERBE/ERBS nonscanner wfov data. J Clim 19(16):4028–4040CrossRefGoogle Scholar
  76. Zhang YC, Rossow WB, Lacis AA, Oinas V, Mishchenko MI (2004) Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: refinements of the radiative transfer model and the input data. J Geophys Res Atmos 109(D19):D19105. doi:10.1029/2003jd004457 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Martin Wild
    • 1
  • Doris Folini
    • 1
  • Christoph Schär
    • 1
  • Norman Loeb
    • 2
  • Ellsworth G. Dutton
    • 3
  • Gert König-Langlo
    • 4
  1. 1.Institute for Atmospheric and Climate ScienceETH ZurichZurichSwitzerland
  2. 2.NASA Langley Research CenterHamptonUSA
  3. 3.NOAA/ESRLBoulderUSA
  4. 4.Alfred Wegener InstituteBremerhavenGermany

Personalised recommendations