Skip to main content

Advertisement

Log in

North-Atlantic dynamics and European temperature extremes in the IPSL model: sensitivity to atmospheric resolution

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The variability of the European climate is mostly controlled by the unstable nature of the North-Atlantic dynamics, especially in wintertime. The intra-seasonal to inter-annual fluctuations of atmospheric circulations has often been described as the alternation between a limited number of preferential weather regimes. Such discrete description can be justified by the multi-modality of the latitudinal position of the jet stream. In addition, seasonal extremes in European temperatures are generally associated with an exceptional persistence into one weather regime. Here we investigate the skill of the IPSL model to both simulate North-Atlantic weather regimes and European temperature extremes, including summer heat waves and winter cold spells. We use a set of eight IPSL experiments, with six different horizontal resolutions and the two versions used in CMIP3 and CMIP5. We find that despite a substantial deficit in the simulated poleward peak of the jet stream, the IPSL model represents weather regimes fairly well. A significant improvement is found for all horizontal resolutions higher than the one used in CMIP3, while the increase in vertical resolution included in the CMIP5 version tends to improve the wintertime dynamics. In addition to a recurrent cold bias over Europe, the IPSL model generally overestimates (underestimates) the indices of winter cold spells (summer heat waves) such as frequencies or durations. We find that the increase in horizontal resolution almost always improves these statistics, while the influence of vertical resolution is less clear. Overall, the CMIP5 version of the IPSL model appears to carry promising improvements in the simulation of the European climate variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Baldwin MP, Dunkerton TJ (1999) Propagation of the arctic oscillation from the stratosphere to the troposphere. J Geophys Res 104(D24):30937–30946. doi:10.1029/1999JD900445

    Article  Google Scholar 

  • Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 294(5542):581

    Article  Google Scholar 

  • Beniston M (2007) Entering into the “greenhouse century”: recent record temperatures in Switzerland are comparable to the upper temperature quantiles in a greenhouse climate. Geophys Res Lett 34(16):16710. doi:10.1029/2007GL030144.

    Article  Google Scholar 

  • Cassou C (2008) Intraseasonal interaction between the Madden–Julian oscillation and the North Atlantic Oscillation. Nature 455(7212):523–527. doi:10.1038/nature07286.

    Article  Google Scholar 

  • Cassou C, Terray L, Phillips AS (2005) Tropical Atlantic influence on European heat waves. J Clim 18(15):2805–2811

    Article  Google Scholar 

  • Cattiaux J, Douville H, Ribes A, Chauvin F, Plante C (2012) Towards a better understanding of wintertime cold extremes over Europe: a pilot study with CNRM and IPSL atmospheric models. Clim Dyn (in press). doi:10.1007/s00382-012-1436-7

  • Cattiaux J, Vautard R, Cassou C, Yiou P, Masson-Delmotte V, Codron F (2010) Winter 2010 in Europe: a cold extreme in a warming climate. Geophys Res Lett 37:L20704. doi:10.1029/2010GL044613

    Article  Google Scholar 

  • Charney JG, DeVore JG (1979) Multiple flow equilibria in the atmosphere and blocking. J Atmos Sci 36:1205–1216

    Article  Google Scholar 

  • Christiansen B (2007) Atmospheric circulation regimes: can cluster analysis provide the number. J Clim 20(10):2229–2250. doi:10.1175/JCLI4107.1

    Article  Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P et al (2011) The twentieth century reanalysis project. Quart J R Meteorol Soc 137(654):1–28 ISSN 1477-870X

    Google Scholar 

  • D’Andrea F, Tibaldi S, Blackburn M, Boer G, Déqué M, Dix MR, Dugas B, Ferranti L, Iwasaki T, Kitoh A et al (1998) Northern Hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1988. Clim Dyn 14(6):385–407

    Article  Google Scholar 

  • Doblas-Reyes FJ, Déqué M, Valero F, Stephenson DB (1998) North Atlantic wintertime intraseasonal variability and its sensitivity to GCM horizontal resolution. Tellus A 50(5):573–595

    Article  Google Scholar 

  • Dufresne JL, et al. (2011) Climate change projections using the IPSL-CM5 Earth System Model with an emphasis on changes between CMIP3 and CMIP5. Clim Dyn (this issue)

  • Fichefet T, Maqueda MAM (1999) Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover. Clim Dyn 15(4):251–268

    Article  Google Scholar 

  • Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:20119. doi:10.1029/2008JD10201

    Article  Google Scholar 

  • Hourdin F, Foujols MA, Codron F, Guemas V, Dufresne JL, Bony S, Denvil S, Guez L, Lott F, Ghattas J et al (2011) Climate and sensitivity of the IPSL-CM5A coupled model: impact of the LMDZ atmospheric grid resolution. Clim Dyn (this issue)

  • Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne JL, Fairhead L, Filiberti MA, Friedlingstein P, Grandpeix JY, Krinner G, LeVan P, Li ZX, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27(7):787–813. doi:10.1007/s00382-006-0158-0

    Article  Google Scholar 

  • Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V et al (2001) The NCEP/NCAR 50-year reanalysis. Bull Am Meteorol Soc 82(2):247–268

    Article  Google Scholar 

  • Klein-Tank A, Wijngaard JB, Konnen GP, Bohm R, Demaree G, Gocheva A, Mileta M, Pashiardis S, Hejkrlik L, Kern-Hansen C et al (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int J Climatol 22:1441–1453. doi:10.1002/joc.773

    Article  Google Scholar 

  • Krinner G, Viovy N, De Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S et al (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem Cycles 19:33. doi:200510.1029/2003GB002199

    Article  Google Scholar 

  • Legras B, Ghil M (1985) Persistent anomalies, blocking and variations in atmospheric predictability. J Atmos Sci 42(5):433–471

    Article  Google Scholar 

  • Madec G, Delecluse P, Imbard M, Levy C (1997) Ocean general circulation model reference manual. LODYC Tech Rep 3:91

    Google Scholar 

  • Marti O, Braconnot P, Bellier J, Benshila R, Bony S, Brockmann P, Cadule P, Caubel A, Denvil S, Dufresne JL et al (2005) The new IPSL climate system model: IPSL-CM4. Note du Pôle de Modélisation 26:1288–1619

    Google Scholar 

  • Matsueda M, Mizuta R, Kusunoki S (2009) Future change in wintertime atmospheric blocking simulated using a 20-km-mesh atmospheric global circulation model. J Geophys Res 114(D12):D12114

    Article  Google Scholar 

  • Menut L, Tripathi OP, Colette A, Vautard R, Flaounas E, Bessagnet B (2011) Evaluation of regional climate simulations for air quality modelling purposes. Clim Dyn (this issue)

  • Michelangeli PA, Vautard R, Legras B (1995) Weather regimes: recurrence and quasi stationarity. J Atmos Sci 52(8):1237–1256

    Article  Google Scholar 

  • Ouzeau G, Cattiaux J, Douville H, Ribes A, Saint-Martin D (2011) European cold winter of 2009/10: How unusual in the instrumental record and how reproducible in the Arpege-Climat model. Geophys Res Lett 38:L11706. doi:10.1029/2011GL047667

    Article  Google Scholar 

  • Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19:3771–3791. doi:10.1175/JCLI3824.1

    Article  Google Scholar 

  • Rust HW, Vrac M, Lengaigne M, Sultan B (2010) Quantifying differences in circulation patterns based on probabilistic models. J Clim (in press) doi:10.1175/2010JCLI3432.1

  • Scaife AA, Folland CK, Alexander LV, Moberg A, Knight JR (2007) European climate extremes and the North Atlantic Oscillation. J Clim 21(1):72–83

    Article  Google Scholar 

  • Schär C, Jendritzky G (2004) Hot news from summer 2003. Nature 432(7017):559–60

    Article  Google Scholar 

  • Seager R, Kushnir Y, Nakamura J, Ting M, Naik N (2010) Northern Hemisphere winter snow anomalies: ENSO, NAO and the winter of 2009/10. Geophys Res Lett 37:L14703. doi:10.1029/2010GL043830

    Article  Google Scholar 

  • Valcke S (2006) OASIS3 user guide. PRISM Support Initiative 3:68

    Google Scholar 

  • van Ulden AP, van Oldenborgh GJ (2006) Large-scale atmospheric circulation biases and changes in global climate model simulations and their importance for climate change in Central Europe. Atmos Chem Phys 6:863–881

    Article  Google Scholar 

  • Vautard R (1990) Multiple weather regimes over the North Atlantic—analysis of precursors and successors. Mon Weather Rev 118(10):2056–2081

    Article  Google Scholar 

  • Vavrus S, Walsh JE, Chapman WL, Portis D (2006) The behavior of extreme cold air outbreaks under greenhouse warming. Int J Climatol 26(9):1133–1147. doi:10.1002/joc.1301

    Article  Google Scholar 

  • von Storch H, Zwiers FW (2001) Statistical analysis in climate research. Cambridge University Press, Cambridge

    Google Scholar 

  • Woollings T, Hannachi A, Hoskins B (2010) Variability of the North Atlantic eddy-driven jet stream. Quart J R Meteorol Soc 136(649):856–868. doi:10.1002/qj.625

    Article  Google Scholar 

  • Yiou P, Nogaj M (2004) Extreme climatic events and weather regimes over the North Atlantic: when and where. Geophys Res Lett 31(7) doi:10.1029/2003GL019119

Download references

Acknowledgments

The authors thank the two anonymous reviewers for helpful comments and are grateful to S. Denvil and I. Musat who provided data of IPSL experiments. J. C. thanks A. Ribes and D. Saint-Martin for helpful discussions. NCEP data are provided by the NOAA/OAR/ESRL PSD, USA (http://www.esrl.noaa.gov/psd/). 20CR data are provided by the NOAA/DOE/OBER, USA (http://www.esrl.noaa.gov/psd/data/20thC_Rean/). E-OBS data are provided by the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and uses data of the ECA&D project (http://eca.knmi.nl).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Cattiaux.

Additional information

This paper is a contribution to the special issue on the IPSL and CNRM global climate and Earth System Models, both developed in France and contributing to the 5th coupled model intercomparison project

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cattiaux, J., Quesada, B., Arakélian, A. et al. North-Atlantic dynamics and European temperature extremes in the IPSL model: sensitivity to atmospheric resolution. Clim Dyn 40, 2293–2310 (2013). https://doi.org/10.1007/s00382-012-1529-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1529-3

Keywords

Navigation