Skip to main content

Atmospheric winter response to a projected future Antarctic sea-ice reduction: a dynamical analysis

Abstract

Several studies have analysed the atmospheric response to sea-ice changes in the Arctic region, but only few have considered the Antarctic. Here, the atmospheric response to sea-ice variability in the Southern Hemisphere is investigated with the atmospheric general circulation model ECHAM5. The model is forced by the present and a projected future seasonal cycle of Antarctic sea ice. In September, the mean atmospheric response exhibits distinct similarities to the structure of the negative phase of the Southern Annular Mode, the leading mode of Southern Hemisphere variability. In the reduced Antarctic sea-ice integration, there is an equatorward shift of the Southern Hemisphere mid-latitude jet and the storm tracks. In contrast to a recent previous study, our findings indicate that a substantial impact of Southern Hemispheric future sea-ice reduction on the mid-latitude circulation cannot be ruled out.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Alexander MA, Bhatt US, Walsh JE, Timlin MS, Miller JS, Scott JD (2004) The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J Clim 17(5):890–905

    Google Scholar 

  2. Bader J, Mesquita MDS, Hodges KI, Keenlyside N, Østerhus S, Miles M (2011) A review on Northern Hemisphere sea-ice, storminess and the North Atlantic Oscillation: observations and projected changes. Atmos Res 101:809–834. doi:10.1016/j.atmosres.2011.04.007

    Article  Google Scholar 

  3. Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19:3518–3543. doi:10.1175/JCLI3815.1

    Article  Google Scholar 

  4. Brayshaw DJ, Hoskins B, Blackburn M (2008) The storm-track response to idealized SST perturbations in an aquaplanet GCM. J Atmos Sci 65(9):2842–2860. doi:10.1175/2008JAS2657.1

    Article  Google Scholar 

  5. Deser C, Magnusdottir G, Saravanan R, Phillips A (2004) The effects of North Atlantic SST and Sea Ice Anomalies on the winter circulation in CCM3. Part II: direct and indirect components of the response. J Clim 17(5):877–889

    Article  Google Scholar 

  6. Deser C, Tomas R, Alexander M, Lawrence D (2010) The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J Clim 23(2):333–351

    Google Scholar 

  7. Hodges KI (1995) Feature tracking on the unit sphere. Mon Weather Rev 123:3458–3465. doi:10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2

    Article  Google Scholar 

  8. Hodges KI (1996) Spherical nonparametric estimators applied to the UGAMP model integration for AMIP. Mon Weather Rev 124:2914–2932. doi:10.1175/1520-0493(1996)124<2914:SNEATT>2.0.CO;2

    Article  Google Scholar 

  9. Hodges KI (1999) Adaptive constraints for feature tracking. Mon Weather Rev 127:1362–1373. doi:10.1175/1520-0493(1999)127<1362:ACFFT>2.0.CO;2

    Article  Google Scholar 

  10. Holton J (2004) An introduction to dynamic meteorology. 4th edn. International Geophysics Series. Elsevier, Amsterdam

    Google Scholar 

  11. Hoskins BJ, Hodges KI (2002) New perspectives on the Northern Hemisphere winter storm tracks. J Atmos Sci 59:1041–1061. doi:10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2

    Article  Google Scholar 

  12. Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196. doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2

    Article  Google Scholar 

  13. Hoskins BJ, Valdes PJ (1990) On the existence of storm-tracks. J Atmos Sci 47(15):1854–1864. doi:10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2

    Google Scholar 

  14. IPCC (2007) Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL. Cambridge University Press, Cambridge

  15. Limpasuvan V, Hartmann DL (2000) Wave-maintained annular modes of climate variability. J Clim 13(24):4414–4429. doi:10.1175/1520-0442(2000)013<4414:WMAMOC>2.0.CO;2

    Google Scholar 

  16. Kidston J, Gerber EP (2010) Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys Res Lett 37:L09708. doi:10.1029/2010GL042873

    Google Scholar 

  17. Kidston J, Taschetto AS, Thompson DWJ, England MH (2011) The influence of Southern Hemisphere sea-ice extent on the latitude of the mid-latitude jet stream. Geophys Res Lett 38(15). doi:10.1029/2011GL048056

  18. Kushnir Y, Robinson WA, Blad I, Hall NMJ, Peng S, Sutton R (2002) Atmospheric GCM response to extratropical SST anomalies: synthesis and evaluation. J Clim 15(16):2233–2256

    Article  Google Scholar 

  19. Magnusdottir G, Deser C, Saravanan R (2004) The effects of North Atlantic SST and Sea Ice Anomalies on the winter circulation in CCM3. Part I: Main Features and Storm Track Characteristics of the response. J Clim 17(5):857–876

    Article  Google Scholar 

  20. Menéndez CG, Serafini V, Le Treut H (1999) The effect of sea-ice on the transient atmospheric eddies of the Southern Hemisphere. Clim Dynam 15(9):659–671. doi:10.1007/s003820050308

    Article  Google Scholar 

  21. Mesquita Michel DS, Hodges Kevin I, Atkinson David E, Bader Jürgen (2010) Sea-ice anomalies in the Sea of Okhotsk and the relationship with storm tracks in the Northern Hemisphere during winter. Tellus A (October):no–no. doi:10.1111/j.1600-0870.2010.00483.x

  22. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  23. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S et al. (2003) The atmospheric general circulation model ECHAM 5. Part I. Vol. 349. MPI-Report

  24. Seierstad Ivar A, Bader Jürgen (2009) Impact of a projected future Arctic Sea Ice reduction on extratropical storminess and the NAO. Clim Dynam 33:937–943. doi:10.1007/s00382-008-0463-x

    Article  Google Scholar 

  25. Serreze Mark C, Holland Marika M, Stroeve Julienne (2007) Perspectives on the Arctics shrinking Sea-Ice cover. Science 315(5818):1533–1536. doi:10.1126/science.1139426

    Article  Google Scholar 

  26. Turner J, Overland JE, Walsh JE (2007) An Arctic and antarctic perspective on recent climate change. Int J Climatol 27(3):277–293. doi:10.1002/joc.1406

    Article  Google Scholar 

  27. Turner J, Overland J (2009) Contrasting climate change in the two polar regions. Polar Res 28(2):146–164. doi:10.1111/j.1751-8369.2009.00128.x

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to two anonymous reviewers and Davide Zanchettin who has done the internal review at MPI-M. The UK Meteorological Office and Hadley Centre is acknowledged for providing the HadISST 1.1—global SST—data-set. We also thank Dr. Kevin Hodges (University of Reading, UK) for providing the storm tracking algorithm TRACK. This work was supported by the Max Planck Society, the Federal Ministry of Education and Research in Germany (BMBF) through the research programme “MiKlip” (FKZ: 01LP1158A) and by the DecCen project funded by the research council of Norway.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jürgen Bader.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bader, J., Flügge, M., Kvamstø, N.G. et al. Atmospheric winter response to a projected future Antarctic sea-ice reduction: a dynamical analysis. Clim Dyn 40, 2707–2718 (2013). https://doi.org/10.1007/s00382-012-1507-9

Download citation

Keywords

  • Zonal Wind
  • Storm Track
  • Southern Annular Mode
  • Equatorward Shift
  • Eady Growth Rate