Climate Dynamics

, Volume 40, Issue 7–8, pp 1671–1686 | Cite as

An estimate of equilibrium sensitivity of global terrestrial carbon cycle using NCAR CCSM4

  • G. Bala
  • Sujith Krishna
  • Devaraju Narayanappa
  • Long Cao
  • Ken Caldeira
  • Ramakrishna Nemani


Increasing concentrations of atmospheric CO2 influence climate, terrestrial biosphere productivity and ecosystem carbon storage through its radiative, physiological and fertilization effects. In this paper, we quantify these effects for a doubling of CO2 using a low resolution configuration of the coupled model NCAR CCSM4. In contrast to previous coupled climate-carbon modeling studies, we focus on the near-equilibrium response of the terrestrial carbon cycle. For a doubling of CO2, the radiative effect on the physical climate system causes global mean surface air temperature to increase by 2.14 K, whereas the physiological and fertilization on the land biosphere effects cause a warming of 0.22 K, suggesting that these later effects increase global warming by about 10 % as found in many recent studies. The CO2-fertilization leads to total ecosystem carbon gain of 371 Gt-C (28 %) while the radiative effect causes a loss of 131 Gt-C (~10 %) indicating that climate warming damps the fertilization-induced carbon uptake over land. Our model-based estimate for the maximum potential terrestrial carbon uptake resulting from a doubling of atmospheric CO2 concentration (285–570 ppm) is only 242 Gt-C. This highlights the limited storage capacity of the terrestrial carbon reservoir. We also find that the terrestrial carbon storage sensitivity to changes in CO2 and temperature have been estimated to be lower in previous transient simulations because of lags in the climate-carbon system. Our model simulations indicate that the time scale of terrestrial carbon cycle response is greater than 500 years for CO2-fertilization and about 200 years for temperature perturbations. We also find that dynamic changes in vegetation amplify the terrestrial carbon storage sensitivity relative to a static vegetation case: because of changes in tree cover, changes in total ecosystem carbon for CO2-direct and climate effects are amplified by 88 and 72 %, respectively, in simulations with dynamic vegetation when compared to static vegetation simulations.


Climate change Terrestrial carbon cycle CO2-physiological effect CO2-fertilization Carbon cycle feedback 

Supplementary material

382_2012_1495_MOESM1_ESM.doc (1.6 mb)
Supplementary material 1 (DOC 1660 kb)


  1. Bala G, Caldeira K, Mirin A, Wickett M, Delire C (2005) Multiceutury changes to the global climate and carbon cycle: results from a coupled climate and carbon cycle model. J Clim 18(21):4531–4544CrossRefGoogle Scholar
  2. Bala G et al (2006) Biogeophysical effects of CO2 fertilization on global climate. Tellus Ser B Chem Phys Meteorol 58(5):620–627CrossRefGoogle Scholar
  3. Betts RA et al (1997) Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387(19):796–799CrossRefGoogle Scholar
  4. Betts RA et al (2004) The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theor Appl Climatol 78(1–3):157–175Google Scholar
  5. Betts RA et al (2007) Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448(7157):1037–1041CrossRefGoogle Scholar
  6. Boer GJ, Arora V (2009) Temperature and concentration feedbacks in the carbon cycle. Geophys Res Lett 36:L02704. doi:10.1029/2008GL036220 CrossRefGoogle Scholar
  7. Bonan GB, Levis S (2010) Quantifying carbon-nitrogen feedbacks in the Community Land Model (CLM4). Geophys Res Lett 37:L0740. doi:10.1029/2010GL042430 CrossRefGoogle Scholar
  8. Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998) Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 396(6711):570–572CrossRefGoogle Scholar
  9. Cao L, Bala G, Caldeira K, Nemani R, Ban-Weiss G (2010) Importance of carbon dioxide physiological forcing to future climate change. Proc Natl Acad Sci USA 107(21):9513–9518CrossRefGoogle Scholar
  10. Castillo CKG, Levis S, Thornton P (2011) Evaluation of the new cndv option of the community land model: effects of dynamic vegetation and interactive nitrogen on CLM4 means and variability. J Clim 25:3702–3714CrossRefGoogle Scholar
  11. Collatz GJ, Ribas-Carbo M, Berry JA (1992) Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust J Plant Physiol 19(5):519–538CrossRefGoogle Scholar
  12. Cox PM et al (1999) The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim Dyn 15(3):183–203CrossRefGoogle Scholar
  13. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408(6809):184–187CrossRefGoogle Scholar
  14. Cramer W et al (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Change Biol 7(4):357–373CrossRefGoogle Scholar
  15. Curtis PS (1996) A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant, Cell Environ 19(2):127–137CrossRefGoogle Scholar
  16. Frank CD, Esper J, Raible CC, Buntgen U, Trouet V, Stosker B, Joos F (2010) Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature 463:527–530CrossRefGoogle Scholar
  17. Friedlingstein P et al (2001) Positive feedback between future climate change and the carbon cycle. Geophys Res Lett 28(8):1543–1546CrossRefGoogle Scholar
  18. Friedlingstein P, Dufresne JL, Cox PM, Rayner P (2003) How positive is the feedback between climate change and the carbon cycle? Tellus Ser B Chem Phys Meteorol 55(2):692–700CrossRefGoogle Scholar
  19. Friedlingstein P et al (2006) Climate-carbon cycle feedback analysis: results from the (CMIP)-M-4 model intercomparison. J Clim 19(14):3337–3353CrossRefGoogle Scholar
  20. Gedalof Z, Berg AA (2010) Tree ring evidence for limited direct CO(2) fertilization of forests over the 20th century. Glob Biogeochem Cycles 24:GB3027. doi:10.1029/2009GB003699 CrossRefGoogle Scholar
  21. Gedney N et al (2006) Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439(7078):835–838CrossRefGoogle Scholar
  22. Gent PR et al (2011) The Community Climate System Model Version 4. J Clim 24(19):4973–4991CrossRefGoogle Scholar
  23. Gillett NP, Arora VK, Zickfeld K, Marshall SJ, Merryfield AJ (2011) Ongoing climate change following a complete cessation of carbon dioxide emissions. Nat Geosci 4(2):83–87CrossRefGoogle Scholar
  24. Good P, Jones C, Jason L, Betts R, Booth B, Huntingford C (2011) Quantifying environmental drivers of future tropical forest extent. J Clim 24:1337–1349CrossRefGoogle Scholar
  25. Govindasamy B et al (2005) Increase of carbon cycle feedback with climate sensitivity: results from a coupled climate and carbon cycle model. Tellus Ser B Chem Phys Meteorol 57(2):153–163CrossRefGoogle Scholar
  26. House JI, Prentice IC, Ramankutty N, Houghton RA, Heimann M (2003) Reconciling apparent inconsistencies in estimates of terrestrial CO2 sources and sinks. Tellus Ser B Chem Phys Meteorol 55(2):345–363CrossRefGoogle Scholar
  27. Jones C, Jason L, Spencer L, Betts R (2009) Committed terrestrial ecosystem changes due to climate change. Nat Geosci 2:484–487CrossRefGoogle Scholar
  28. Jones C, Jason L, Spencer L, Betts R (2010) Role of terrestrial ecosystems in determining CO2 stbilization and recovery behaviour. Tellus Ser B Chem Phys Meteorol 62(5):682–699CrossRefGoogle Scholar
  29. Joos F, Sarmiento JL, Siegenthaler U (1991) Estimates of the effect of Southern-Ocean iron fertilization on atmospheric CO2 concentrations. Nature 349(6312):772–775CrossRefGoogle Scholar
  30. Kloster S et al (2010) Fire dynamics during the 20th century simulated by the Community Land Model. Biogeosciences 7(6):1877–1902CrossRefGoogle Scholar
  31. Lawrence DM et al (2011) Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J Adv Model Earth Syst 3:1–29. doi:10.1029/2011MS000045
  32. Le Quere C et al (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2(12):831–836CrossRefGoogle Scholar
  33. Levis S, Bonan GB, Vertenstein M, Oleson KW (2004) The Community Land Model’s dynamic global vegetation model (CLM-DGVM): technical description and user’s guide. NCAR, BoulderGoogle Scholar
  34. Lloyd J, Taylor JA (1994) On the temperature-dependence of soil respiration. Funct Ecol 8(3):315–323CrossRefGoogle Scholar
  35. Matthews HD (2007) Implications of CO(2) fertilization for future climate change in a coupled climate-carbon model. Glob Change Biol 13(5):1068–1078CrossRefGoogle Scholar
  36. Matthews HD, Weaver AJ, Meissner KJ (2005) Terrestrial carbon cycle dynamics under recent and future climate change. J Clim 18(10):1609–1628CrossRefGoogle Scholar
  37. Nadelhoffer KJ et al (1999) Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398(6723):145–148CrossRefGoogle Scholar
  38. Norby RJ et al (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Nat Acad Sci USA 102(50):18052–18056CrossRefGoogle Scholar
  39. Oleson KW et al (2008) Improvements to the Community Land Model and their impact on the hydrological cycle. J Geophys Res 113:G01021. doi:10.1029/2007JG000563 CrossRefGoogle Scholar
  40. Oleson KW, Bonan GB, Feddema JJ, Vertenstein M, Kluzek E (2010) Technical description of an urban parameterization for the Community Land Model (CLM). NCAR, BoulderGoogle Scholar
  41. Owensby CE, Ham JM, Knapp AK, Auen LM (1999) Biomass production and species composition change in a tallgrass prairie ecosystem after long-term exposure to elevated atmospheric CO2. Glob Change Biol 5(5):497–506CrossRefGoogle Scholar
  42. Plattner GK et al (2008) Long-term climate commitments projected with climate-carbon cycle models. J Clim 21(12):2721–2751CrossRefGoogle Scholar
  43. Prentice IC et al (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton JT et al (eds) Climate change 2001: the scientific basis. Cambridge University Press, New YorkGoogle Scholar
  44. Qian T, Dai A, Trenberth KE, Oleson KW (2006) Simulation of global land surface conditions from 1948 to 2004. Part I: forcing data and evaluations. J Hydrometeorol 7:953–975CrossRefGoogle Scholar
  45. Randerson JT et al (2009) Systematic assessment of terrestrial biogeochemistry in coupled climate-carbon models. Glob Change Biol 15(10):2462–2484CrossRefGoogle Scholar
  46. Schimel D et al (1995) CO2 and the carbon cycle. In: Houghton JT et al (eds) Climate change 1994, radiative forcing of climate change and evaluation of the IPCC IS92 emission scenarios. Cambridge University Press, New YorkGoogle Scholar
  47. Schuur EAG et al (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58(8):701–714CrossRefGoogle Scholar
  48. Schuur EAG et al (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459(7246):556–559CrossRefGoogle Scholar
  49. Sellers PJ et al (1996) Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science 271(5254):1402–1406CrossRefGoogle Scholar
  50. Sitch S et al (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob Change Biol 14(9):2015–2039CrossRefGoogle Scholar
  51. Thompson SL et al (2004) Quantifying the effects of CO2-fertilized vegetation on future global climate and carbon dynamics. Geophys Res Lett 31(23):L23211. doi:10.1029/2004GL021239 CrossRefGoogle Scholar
  52. Thornton PE, Lamarque JF, Rosenbloom NA, Mahowald NM (2007) Influence of carbon-nitrogen cycle coupling on land model response to CO(2) fertilization and climate variability. Glob Biogeochem Cycles 21:GB4018. doi:10.1029/2006GB002868 CrossRefGoogle Scholar
  53. Thornton PE et al (2009) Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model. Biogeosciences 6(10):2099–2120CrossRefGoogle Scholar
  54. Zaehle S, Friedlingstein P, Friend AD (2010) Terrestrial nitrogen feedbacks may accelerate future climate change. Geophys Res Lett 37:L01401. doi:10.1029/2009GL041345 CrossRefGoogle Scholar
  55. Zeng N, Qian HF, Munoz E, Iacono R (2004) How strong is carbon cycle-climate feedback under global warming? Geophys Res Lett 31:L20203. doi:10.1029/2004GL020904 CrossRefGoogle Scholar
  56. Zickfeld K, Eby M, Matthews HD, Schmittner A, Weaver AJ (2011) Nonlinearity of carbon cycle feedbacks. J Clim 24(16):4255–4275CrossRefGoogle Scholar
  57. Zwiers F, von Storch H (1995) Taking serial correlation into account in tests of the mean. J Clim 8:336–351CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • G. Bala
    • 1
  • Sujith Krishna
    • 1
  • Devaraju Narayanappa
    • 1
  • Long Cao
    • 2
  • Ken Caldeira
    • 3
  • Ramakrishna Nemani
    • 4
  1. 1.Divecha Center for Climate Change, Center for Atmospheric and Oceanic SciencesIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Earth SciencesZhejiang UniversityHangzhouChina
  3. 3.Department of Global EcologyCarnegie InstitutionStanfordUSA
  4. 4.NASA Ames Research CenterMoffett FieldUSA

Personalised recommendations